Koerner Award Lecture: Geosynthetic-reinforced column-supported embankments: Bridging theory and practice
Jie Han, PhD, The University of Kansas
Geosynthetics have been successfully used to improve the performance of column-supported embankments over soft soils. Geosynthetic-reinforced column-supported embankments involve complex load transfer mechanisms, including soil arching, tensioned membrane, stress concentration, lateral restraint, and anchorage. Different theoretical models are available to describe soil arching but often result in different predicted stresses. Due to three-dimensional layout of columns, tension distribution in geosynthetic reinforcement is spatial. Column-soil stiffness difference induces soil arching and contributes to stress concentration and down-drag forces on columns. Side slopes of embankments promote lateral spreading and global instability that can be stabilized by lateral restraint and anchorage of geosynthetics. Localized surface loading further affects load transfer among soils, columns, and geosynthetics. This lecture will illustrate how theoretical solutions can be used to explain existing phenomena and solve practical problems in geosynthetic-reinforced column-supported embankments including required tensile strength of geosynthetic reinforcement, settlement, and global stability.

Play Recording