GEOSYSTEMS: GEOSYNTHETICS IN COASTAL AND HYDRAULIC ENGINEERING

Short Course: "Geosynthetics in Erosion and Sediment Control and Erosion-Resistant Hydraulic Structures"

> Presenter: Eng. Nathalia Castro, MSc. Solmax, Engineering Business Manager Dewatering and Marine Group February 05, 2023

INTRODUCTION – PART 1

- What is a Geosystem?
- Why is There a Need for Geosystems Design?
- Materials and Testing
 - Different types of geosynthetics
 - Testing of the properties (mechanical and hydraulic)
 - Modelling large scale testing
- Design Rules
- Geosystems & Design tools

REFERENCES

Geosynthetics and Geosystems in Hydraulic and Coastal Engineering

Krystian W. Pilarczyk

3

WHAT IS A GEOSYSTEM?

"Geotextile-encapsulated sand elements are three- dimensional systems manufactured from textile materials that are filled with sand. They form a sub-group of a wider system of geosynthetic solutions for erosion control that are known as **Geosystems**. These elements are used in hydraulic engineering structures such as dams, dykes, and breakwaters as an alternative for quarry stone e.g., as core material. They may also be used for bottom or bank protection or to fill up a scour hole."

> Geosystems. Design Rules and Applications A. Bezuijen & E.W. Vastenburg

WHY IS THERE A NEED FOR GEOSYSTEMS DESIGN?

- Accelerated erosive process around the world
- Crescent necessity to protect coastal and inland shorelines
- Several types of geotextile-encapsulated sand elements (Geosystems)
- Each Geosystem has its own fabrication method and solves different types of marine challenge
- Sand is the world's most consumed raw material after water, so why not to do our best to protect it?

5

WAIT, WHAT? SHORTAGE OF SAND? ← → C ■ procurious.com/procurement-news/surprising-sand-snortage-crimping-global-supply-chains 6 -> C i crocunous.com/procurement-news/surprising-sand-shortage-crimping-global-supply-chains procurious 🖵 procurious Events Discussions Groups Resources Blog News Discover events, people, resources and much more Discover events, people, resources and much more. 0 BACK TO BLOG The Unseen Issues The Surprising Sand Shortage Crimping The demand for construction sand is so high that criminal gangs fight over sandy locations and storage **Global Supply Chains** depots. Some shady companies vacuum sand from beaches and riverbeds, undermining nearby building foundations and destroying marine habitats. Because sand is such a common commodity, monitoring the supply chain could be a nightmare for companies tracking ethical sourcing. In The Prime (Processing New Country) (Super Verse Strenge) (Super Verse Management) Jan 20, 3 20 PM • 4 min read One of the lessons for procurement and supply chain professionals is the fragility of lean and just-in-time manufacturing philosophies. Learn the hard lesson as your organisation reconfigures its supply chain for BDSA the new normal. When supply is plentiful, just-in-time works well. But when supplies are constrained, the lean system may stretch until it snaps. A surprising shortage of the right type of sand is crimping glass production, and shattering the beverage There are significant downstream impacts when one link in the chain, such as bottle production, is and pharma supply chain. weakened. A lean philosophy sees inventory as waste, but if a production line is shut down because glass bottles aren't available, the inventory cost is small compared to the loss of revenue. It's worth carrying some inventory of critical components during normal times to prepare for times of crisis. But in order to do this effectively, you need to know everything in your supply chain and understand its potential impact. Even when it's a little surprising!

WAIT, WHAT? SHORTAGE OF SAND?

\leftarrow $-$, \mathbf{G} , \mathbf{e} -increased in the second strategy of the	🗧 🕴 C 📲 procunsus com/processient envolvementg-Land-promages timologistal and a solution
procurious Events Discussions Groups Resources Blog News	procurious Events Discussions Groups Resources Blog News
E - Discover events: people, resources and thuch more	Discover events, people, resources and much more
The Surprising Sand Shortage Cr	The Unseen Issues
Jan 20, 3:20 PM • 4 min read	The demand for construction sand is so high that criminal gangs fight over sandy locations and storage depots. Some shady companies vacuum sand from beaches and riverbeds, undermining nearby building foundations and destroying marine habitats. Because sand is such a common commodity, monitoring the
D ≈ Q (1	supply chain could be a nightmare for companies tracking ethical sourcing.

A surprising shortage of the right type of sand is crimping glass production, and shattering the beverage and pharma supply chain.

There are significant downstream impacts when one link in the chain, such as bottle production, is weakened. A lean philosophy sees inventory as waste, but if a production line is shut down because glass bottles aren't available, the inventory cost is small compared to the loss of revenue.

It's worth carrying some inventory of critical components during normal times to prepare for times of crisis. But in order to do this effectively, you need to know everything in your supply chain and understand. Its potential impact. Even when it's a little surprising!

7

WAIT, WHAT? SHORTAGE OF SAND?

Yet, the world is facing a shortage — and climate scientists say it constitutes one of the greatest sustainability challenges of the 21st century.

WAIT, WHAT? SHORTAGE OF SAND?

A sand shortage? The world is running out of a crucial — but under-

appreciated - commodity

 Yet the world is facing a shortage — and climate scient the greatest custainability challenges of the 21st centur.

is it time for panicking? Wall, thet will certainly not help, but it is time to take a fook ind change our perception about sand," said Pascal Peduzzi, a climate scientist with

Sam Meredith

KEY * Send is the world's most cons POINTS ingredient to our everyday live C a choccom/2021/03/05/sand-shortage-the-world-is-running-out-of-a-crucal-commonly.html

A sand shortage? The world is running out of a crucial — but under-appreciated — commodity

LONDON - An insatiable global appetite for sand, one of the world's most

Our entire society is built on sand. It is the world's most consumed raw material after water and an essential ingredient to our everyday lives.

Sand is the primary substance used in the construction of roads, bridges, highspeed trains and even land regeneration projects. Sand, gravel and rock crushed together are melted down to make the glass used in every window, computer screen and smart phone. Even the production of silicon chips uses sand.

Yet, the world is facing a shortage — and climate scientists say it constitutes one of the greatest sustainability challenges of the 21st century.

Dozens of trucks dump hundreds of thousands of tons of sand on Miami Beach as part of U.S. government measures to protect Florida's tourist destinations against the effects of climate change. EVA MARIE UZCATEGUI | AFP | Getty Images

MATERIALS AND TESTING

11

MATERIALS

- Raw Material
 - Polyester
 - Polypropylene
 - Polyethylene
- Specific Gravity(*)
- Type of Geotextiles
 - Nonwoven (*)
 - Woven
 - Geocomposites

TESTING

- Pore size distribution
- Permeability
- Tensile Strength (Machine Direction and Cross Machine Direction)
- Seam Strength
- UV resistance
- Abrasion
- Impact
- Fill Port
- Modelling (Stability in Waves)
- Liquefaction

13

MATERIALS

- There are several types of geosynthetics in the market
- Geotextiles and Geocomposites are the main category for Geosystems
- The fabrication material selection should take into consideration:
 - Raw Material 🗸
 - Fill Material
 - Initial loss during filling process is ok, however there must be no loss of fill material over time.

MATERIALS

- Permeability
 - Hydraulic Load
 - Stationary
 - Dynamic
 - Fill material vs. Fabrication material
 - Pore size distribution vs. grain size distribution
 - Combination of Fabrication Materials

MATERIALS – HYDRAULIC LOAD

Table 2.3 Recommended design retention geotextiles.	on criteria for geometrically closed
	Sand (D > 60 μm)
Stationary hydraulic load (current) Dynamic hydraulic load (wave attack)	$O_{90} < 5 D_{10} C_u^{1/2} \text{ and } O_{90} 2 D_{90}$ $O_{90} < 1.5 D_{10} C_u^{1/2} \text{ and } O_{90} < D_{90}$
O_{90} = pore size of the geotextile that corresponds which 90% remains on the geotextile (in the D_x = sieve size through which x% fraction of the C_u = uniformity coefficient of the sand (D_{60}/D_{10}) .	s to the average diameter of the sand fraction of e wet sieving method). Aos sand material passes.

TESTING – APPARENT OPENING SIZE

17

TESTING – PORE SIZE DISTRIBUTION (Capillary Flow Pore Size Test)

AOS vs PSD

MATERIALS AND TESTING

Grain Size Distribution vs Pore Size Distribution

MATERIALS

- Tensile Strength and Strain
 - The tensile strength and seam strength must be sufficient to resist the loads impacted during the filling, transporting and placement of the elements
 - Woven geotextiles generally have relatively high tensile strength and a low maximum strain, while nonwoven geotextiles have a relatively low tensile strength and a high maximum strain

MATERIALS AND TESTING – STRESS X STRAIN

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value		
	11091031100		MD	CD	
Wide Width Tensile Strength (at ultimate)	ASTM D4595	lbs/in (kN/m)	450 (78.8)	625 (109.4)	
Wide Width Tensile Elongation	ASTM D4595	%	20 (max.)	20 (max.)	
Factory Seam Strength	ASTM D4884	lbs/in (kN/m)	400	(70)	
CBR Puncture Strength	ASTM D6241	lbs (N)	2000	(8900)	

High Strength Polypropylene Woven Geotextile

MATERIALS AND TESTING

Test Run Results						
Name	Tagged Comment		Peak Load In. (lbf/in)	%Strn @ Pk Ld (%)		
Test Run 1	No		193.6	117.89696		
Test Run 2	No	1212	213.9	129.64716		
Test Run 3	No	1 and	188.7	114.87404		
Test Run 4	No	S. Sal	197.4	121.25146		
Test Run 5	No	12-20-2	216.7	127.85367		
	Mean		202.1	122.30466		
10 10 IS IS	Standard I	D	12.5	6.33354		

23

MATERIALS

- Type of Seam
 - The overall strength of sand filled element is in many cases governed by the strength of the seams
 - The seam strength depends upon its type, the thread, the geotextile and the sewing machine (number of stitches/needles, number of rows)
 - There are several types of seams

MATERIALS - SEAMS

25

MATERIALS

- Damage During Installation
- Durability
 - UV exposure
 - Temporary
 - Permanent
 - Covered or not
 - Wave attack, Debris...
- Aesthetics
 - Color, Texture...
- Environment
 - Boats
 - Rocks
 - Existing structures

MATERIALS AND TESTING

TESTING

- ✓ Pore size distribution
- ✓ Permeability
- ✓ Tensile Strength (Machine Direction and Cross Machine Direction)
- ✓ Seam Strength
- UV resistance
- Abrasion
- Impact
- Fill Port
- Modelling (Stability in Waves)
- Liquefaction

TESTING

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value	
	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		MD	CD
Wide Width Tensile Strength (at ultimate)	ASTM D4595	lbs/in (kN/m)	450 (78.8)	625 (109.4)
Wide Width Tensile Elongation	ASTM D4595	%	20 (max.)	20 (max.)
Factory Seam Strength	ASTM D4884	lbs/in (kN/m)	400	(70)
CBR Puncture Strength	ASTM D6241	lbs (N)	2000	(8900)
			Maximum (Opening Size
Apparent Opening Size (AOS)	ASTM D4751	U.S. Sieve (mm)	40 (1	0.425)
			Minimum	Roll Value
Water Flow Rate	ASTM D4491	gpm/ft² (l/min/m²)	20	(813)
			Minimum	Test Value
UV Resistance (% strength retained after 500 hrs)	ASTM D4355	%	4	80
				and the second s
Filtration Properties	Test Method	Unit	Typic	al Value
Pore Size Distribution (Oso)	ASTM D6767	micron	1	35
Pore Size Distribution (Oss)	ASTM D6767	micron	3	05
Physical Properties	Test Method	Unit	Туріс	al Value
Mass/Unit Area	ASTM D5261	oz/yd² (g/m²)	16.4	(556)
Thickness	ASTM D5199	mils (mm)	70	(1.8)

29

TESTING

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value		
			MD	CD	
Wide Width Tensile Strength (at ultimate)	ASTM D4595	lbs/in (kN/m)	1142 (200)	1142 (200)	
Tensile Strength (at 5% strain)	ASTM D4595	Ibs/in (kN/m)	200 (35)	1000 (175)	
Wide Width Tensile Elongation	ASTM D4595	1%	17 (max.)	10 (max.)	
Factory Seam Strength	ASTM D4884	lbs/in (kN/m)	914 (160)		
CBR Puncture Strength	ASTM D6241	lbs (kN)	4000 (17.8) ¹		
UV Resistance (% strength retained after 500 hrs)	ASTM D4355	%	96.5		
UV Resistance (retained tensile strength after 1400 MJ/m2 exposure)	EN 12224/EN 12226	%		50	

Hydraulic Properties	Test Method	Unit	Minimum Average Roll Value
Apparent Opening Size (AOS)	ASTM D4751	U.S. Sieve (mm)	30 (0.60)
Water Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	20 (815)
Permittivity	ASTM D4491	sec'1	0.35

TESTING

Mechanical Properties	Test Method	Unit	Minimum	Test Value
mochanical Properties	rest motilod	onn	MD	CD
Wide Width Tensile Strength	ISO 10319	lbs/in (kN/m)	360 (63)	310 (54)
Factory Seam Strength	ISO 10321	lbs/in (kN/m)	286	(50)
CBR Puncture Strength	ISO 12236	Ibs (N)	1821	(8100)
Rigid Port Strength ¹	ASTM D6241	lbs/in (kN/m)	1356	(53.4)
Hydraulic Properties	1.1.1.1.1.1		Minimum	Test Value
Pore Size On	ISO 12956	(mm)	(0.14)	
Water Permeability	ISO 11058	gpm/ft2 (l/min/m2)	(9.8)	
Durability Properties		1	Test	Value
Impact Energy ²	ASTM E1886	ft-lbs (N-m)	1233	(1671)
Abrasion Resistance ³	BAW RPG 3.11	%	9	3
UV Resistance	ASTM D4355	%	\$	0
Physical Properties	Test Method	Unit	TC120MB Typical Value	TC120MG Typical Value
Mass/Unit Area	ASTM D5261	oz/yd ² (g/m ²)	35 (1186)	35 (1186)
Color			Tan	Green

Modified ASTM Method, Connection Strength (Ibs/in) = P/gD ?

'Modified ASTM Method, Estimated Impact Energy (tf-lb) « mV2/g German rolating drum lest method based on conducting Iwo abrasion cycles al 40,000 revolutions each. % strength relamed affer 80,000 cycles

TESTING – UV

- Accelerated test
- UVA-340 lamps has excellent simulation for sunlight UV-A spectrum from 295 nm to 340 nm; beyond 340 nm lamp radiation deviates from sunlight spectrum
- Explained in EN 12224:2000, Note 2:
 - The durations required to reach a radiant exposure of 50 MJ/m² have been shown to be approximately
 - 320 h for devices with a combination of fluorescent UV lamps;
 - 350 h for devices with type I (340 nm) fluorescent lamps if the lamps are left on during the water spray;
 - 430 h for devices with type I (340 nm) fluorescent lamps if the lamps are turned off during the water spray.

33

TESTING – UV

Laboratory Accelerated UV Test (EN12224)

1.2 1.0 Irradiance W/m^{2/nm} Sunlight 0.8 0.6 0.4 VA-340 0.2 0.0 260 280 300 320 340 360 380 400 Wavelength (nanometers)

QUV Test Machine

TESTING – UV

BW1200 Multiple Cycles UV Tests

35

TESTING – UV

Estimation of UV Half Life (By earth's surface annual insolation zones)

The conversion of units are as follows; 1 kWh = 3.6 MJ, therefore 1 kW/m²/day = 365 kWh/m²/year = 1314 MJ/m²/year. The ratio of UV radiation to total solar radiation for South Florida was determined as 1:20 in the studies by Baker (1997). The same ratio is assumed to apply to the project sites presented in Table below. Estimation is conservative as any cover effect of lodged particles are ignored.

Earth's surface annual insolation zone	Examples of cities located in the zone	Upper bound a insolation at s	annual solar ite	Annual UV radiation at site	Time to 96 % strength at site	Projected UV half life at site
(kWh/m²/day)		(kWh/m²/day)	(MJ/m ² /year)	(MJ/m ² /year)	(year)	(year)
2.5 to 3.0	London, Amsterdam	3.0	3942	197.1	5.23	65
3.0 to 3.5	Otago, Vancouver, Paris, Quebec	3.5	4599	230.0	4.35	54
3.5 to 4.0	Seattle, Sapporo, Christchurch	4.0	5256	262.8	3.81	48
4.0 to 4.5	Tianjin, Seoul, Horbart, Tokyo, New York	4.5	5913	295.7	3.38	42
4.5 to 5.0	Xiamen, Sydney, Kuala Lumpur, Auckland	5.0	6570	328.5	3.04	38
5.0 to 5.5	Ho Chi Minh, Jakarta, Tampa,	5.5	7227	361.4	2.77	35
5.5 to 6.0	Maldives, Lhasa,	6.0	7884	394.2	2.54	32
6.0 to 6.5	Qatar, Alice Springs	6.5	8541	427.1	2.34	29
6.5 to 7.0	Broome	7.0	9198	459.9	2.17	27

TESTING

- ✓ Pore size distribution
- ✓ Permeability
- ✓ Tensile Strength (Machine Direction and Cross Machine Direction)
- ✓ Seam Strength
- ✓ UV resistance
- Abrasion
- Impact
- Fill Port
- Modelling (Stability in Waves)
- Liquefaction

37

<section-header>

TESTING - ABRASION

39

TESTING - IMPACT

- <u>Hurricane Impact Testing Results:</u>
- Three impacts @ 103km/h (64 mph)
- Minimum surface damage
- No fabric rupture

41

TESTING – FILL PORT

Mechanical port (Geoport™)

Sewn in sleeve port

TESTING – FILL PORT

Stress Concentration Around Geotextile Tube Filling Port (Yuan et al, 2008) The First Pan American Geosynthetics Conference & Exhibition 2-5 March 2008, Cancun, Mexico

43

TESTING – FILL PORT

 Sewn in Sleeve Port Test Method (A Laboratory Full-Scale Tensile Test of Geotextile Tube Inlet Port, Eng Zi Xun, 10th International Conference of Geosynthetics, Germany 2014)

45

DESIGN RULES

Identify Problem
7
Research
gineering n Process
Develop Possible Solutions

TECHNICAL TERMS AND DEFINITIONS

Geosystems

- Geotextile bag, Sand Filled Mattress, Geotextile tube and Geocontainer
- Geotextile-Encapsulated Sand Elements:
- Considering the type of Geosystem, it is each part that forms the entire structure
- Structure:
- It is a group of Geotextile-Encapsulated Sand Elements

STEP 1: GEOMETRIC DESIGN

- Determine global dimensions
 - Length
 - Width
 - Slope angle
- Determine key dimensions of the structure
 - Water depth
 - Hydraulic loading
 - Elevations
 - Tidal, Floods
- Determine the construction elements
- Chose most appropriate method of execution
 - Necessary and/or available equipment

49

STEP 2: SAFETY CONSIDERATIONS

- Deterministic method
 - Resistance ≥ FS (overall) * Loads
- Potential failure mechanisms
 - Inadequate stability (Waves, Current, Geosystem itself, Foundation)
 - Inadequate strength (Filling, Placement, Protection, Durability)
 - Loss of fill material (Porosity, Sand gradation)

STEP 3: GEOSYSTEMS DESIGN TOOLS

- Geometry Calculation (GeoCoPS, SOFTWIN, Deltares, Geotube[®] Simulator)
- Geosystem Specific Calculators
- Pilot Project
- Modelling
- Experience

GEOSYSTEMS & DESIGN TOOLS

GEOSYSTEMS

Sand Filled Mattress

- River and stream: soil and bank protection, scour hole protection
- Other: Nature development areas

Geotextile Bag

- **Coastal:** Beach groyne, breakwater, dune toe protection, channel repair, soil and bank protection, dyke closure
- River and stream: Submerged breakwater, groyne and sediment management, soil and bank protection, scour hole repair
- Other: Nature development areas

Geotextile Tube

- Coastal: Beach groyne, breakwater, dune toe protection, submerged revetments, channel repair, land reclamation, artificial reef, sill structure
- River and stream: Submerged breakwater, groyne and sediment management, river training, bank protection, dune core reinforcement
- Other: Nature development areas, dewatering of dredged material, temporary structures

Geocontainer

- Coastal: Breakwater, sill structures, channel repair, land reclamation, artificial reef, dyke closure, toe stability
- River and stream: Submerged breakwater, groyne and sediment management, scour hole repair
- Other: Storage of dredged material, temporary works

53

SAND FILLED MATTRESS

- Comprises two interconnected layers of geotextile where the space between them is filled with sand and, in special cases, concrete.
 Cells, chambers or tubes form compartments within the mattress, which facilitates an even distribution of the fill material in the geotextile mattress and maintains its shape and combats movement of the fill material during use.
- It's important to secure it in place with anchor trenches and steel anchors along the length of the slope.
- Can be filled in place or filled separately and transported to the slope.

SAND FILLED MATTRESS

55

SAND FILLED MATTRESS

• SFM Anchoring Calculator

• SFM Hoisting Calculator

SAND FILLED MATTRESS

SAND FILLED MATTRESS – DESIGN TOOL

			Required Tensile Strength - SFM Hoisting	*
Geot	uhe	Project:		
GLOI	ube	Date:		
Geotextile	GT1	.000		
L		m	Length of the geotextile mattress	
bm		m	Width of the geotextile mattress	2222222222
bg		m	Width of the geotextile	
Dk		m	Effective thickness of the geotextile mattress	<u>EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE</u>
ρ		kg/m3	Density of the geotextile mattress	
g		m/s2	Acceleration due to gravity	정망망망망망망망
T*	35,32	kN/m	Tensile load per unit width in the geotextiles in the mattress	*********
FS	4,53		Factor of Safety for Seam Strength	*****

61

GEOTEXTILE BAGS

- Bezuijen and Vastenburg define a Geotextile bag as a container that's normally filled with sand, and with volumes between 0.3 and 10 m3.
- Improvements to the installation methods have been allowing the use of Geotextile Bags with volumes over 160 m3 (300 tons).
- If the volume is lower than 0.3 m3, then they're called sandbags.

GEOTEXTILE BAGS

• Steps 1 and 2

• Lifting harness Calculator

63

GEOTEXTILE BAGS – DESIGN TOOL

GEOTEXTILE TUBE

Geotextile tube is defined as "a large tube [greater than 7.5 feet (2.3 m) in circumference] fabricated from high strength, woven geotextile, in lengths greater than 20 linear feet (6.1 m)", according to GRI Test Method GT11: Standard Practice for "Installation of Geotextile Tubes used as Coastal and Riverine Structures".

65

<image>

GEOTEXTILE TUBE – 1ST MARINE APPLICATION IN AMERICA

1993

2019

67

GEOTEXTILE TUBE - DEWATERING

Vicksburg, MS -1995

GEOTEXTILE TUBE - DEWATERING

Lake Onondaga Project, NY-2015

69

GEOTEXTILE TUBE

Fig. 10: Schematic of the hydraulic filling of a geotextile tube with sand (T.W. Yee, 2016)

71

GEOTEXTILE TUBE - DESIGN TOOL

Acta Mechanica 129, 207-218 (1998)

ACTA MECHANICA © Springer-Verlag 1998

Two-dimensional analysis of geosynthetic tubes

R. H. Plaut and S. Suherman, Blacksburg, Virginia

(Received May 5, 1997)

Summary. Geosynthetic tubes containing dredged material or morate are considered. A two-dimensional analysis of across section of the tube is carried out. The tube is modeled as a membrane with negligible weight and extensibility, resting on a rigid foundation and subjected to internal hydroxisti pressure. Closed-form and approximate solutions for the cross-sectional shape and the circumferential tension are presented, depending on the ratio of the pressure had (at the bottom or top of the tube) to the perimeter. An urper bound on the tension is obtained. Solutions are also determined for tubes that are partially of fully subserged in an accural mixia, tubes that are to a adformable foundation can be added to a solit, and the stable foundation problem of tubes that act as aldse and are subjected to external fluid on one side. A deformable foundation and a trust because the restore adtremate the stable of the tension to tension to the tension is not the tension to the restore the tension to the stable course the trust tension can be restored to tension the tension to the tension to tension to the tension to the restore the tension to the stable course the tension to the tension to tension tension.

1 Introduction The use of thin sheets of material in geotechnical engineering has become widespread. Books describing the properties of these geosynthetics include [1]-[7], In some cases the material is formed into a tube, often filled with dredged material or mortar. These geosynthetic tubes have been utilized in a variety of applications. One of the primary uses is as a dike or breakwater [8]-[10]. Prevention of beach erosion [11] and rehabilitation of sloops [12] are two other applications. Geosynthetic tubes also may be used to contain contaminated materials [13], prevent scour under bridge piers and other structures [4], protect tuncels and undervanter pipelines [15], and diver pollution [16]. Recently it has been proposed to use these tubes under water to improve waves for surfing [17]. The shapes of geosynthetic tubes here been analyzed in a number of studies. Typically, the material is modeled as an inectensible membrane with negligible weight, and the tube is assumed to rost on a rigid, horizontal (bundation, to be subjected to internal (and possibly external) bydrostatic pressure, and to be subficently long so that a two-dimensional analysis of a cross section of the tube is appropriate.

Two-dimensional analysis of geosynthetic tubes

R. H. Plaut and S. Suherman, Blacksburg, Virginia

(Received May 5, 1997)

Fig. 1. Cross section of tube on rigid foundation

Fig. 2. Element of tube

73

GEOTEXTILE TUBE - DESIGN TOOL

75

GEOTEXTILE TUBE – DESIGN TOOL

⁷⁷

GEOTEXTILE TUBE – DESIGN TOOL

	Mechanical Properties	Test Method	Unit	Minimum Average Roll Value		
				MD	CD	
(CFS)	Wide Width Tensile Strength (at ultmate)	ASTM D4595	Ibs/in (kN/m)	1142 (200)	1142 (200)	
	Tensile Strength (at 5% strain)	ASTM D4595	lbs/ft (kN/m)	200	1000	
	Wide Width Tensile Elongation	ASTM D4595	%	17 (max.)	10 (max.)	
AFS)	Factory Seam Strength	ASTM D4884	lbs/in (kN/m)	914 (160)		
	CBR Puncture Strength	ASTM D6241	lbs (kN)	4000 (17.8)1		
	UV Resistance (% strength retained after 500 hrs)	ASTM D4355	%	1	85	
	Hydraulic Properties	Test Method	Unit	Minimun Roll	n Average Value	
	Apparent Opening Size (AOS)	ASTM D4751	U.S. Sieve (mm)	30 (0.60)	
	Water Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	20	(815)	
	Permittivity	ASTM D4491	sec'1	0	.35	

79

GEOTEXTILE TUBE – DESIGN TOOL

Test Specimen	Internal Port Diameter D	Loading Plate Diameter d	Displacement Rate (in./min)	Maximum Puncture Load P (lbs)	Maximum Displacement (in.)	Mobilized Connection (Seam) Strength $\sigma_t = (P/\pi D)$ (lbs/in.)	Failure Mode		
1	8.5	7.5	1.0	16386	3.44	614	Rupture		
2							of geotextile		
3	1 1 1 1				Ú.				
4	1								
5		-				. *			
Mean	3				0	2010 - E. C. (1997)			

81

GEOCONTAINERS

- Geotextile container or Geocontainer is a large geotextile-encapsulated sand element containing 100 m3 to 800 m3 of sand and is dropped through water from a split bottom barge.
- The available barge determines the size of the container which, consequently, leads the final design.
- Commonly used when water depth is deeper than 3m (~10ft)

GEOCONTAINERS

83

GEOCONTAINERS - DESIGN

GEOCONTAINERS

GEOCONTAINERS

GEOCONTAINERS - MODELLING

87

GEOCONTAINERS - MODELLING

GEOCONTAINERS - MODELLING

89

DESIGN TOOL - CARBON FOOTPRINT

DESIGN TOOL - CARBON FOOTPRINT


```
91
```

DESIGN TOOL - CARBON FOOTPRINT

DESIGN TOOL – SLOPE STABILITY

DESIGN TOOL – SETTLEMENT ANALYSIS

ESTIMATE OF CONTACT STRESS AND BEARING CAPACITY CASE #1: ONE LAYER OF GEOTURES FLACED ON TOP OF FOLNDATION SOIL			Project ESTIMATE OF SETTLEMENTS											
		Soil Layers From the top of Soil Test Boring	Depth Below Bottom Surface	Layer Thickness H,	Mid Layer Depth	Assumed Saturated Unit Weight of Soil Layer Yw	Initial Verticle Stress at initially af Layer of	Increase of Verticle Stress For Weight of Embankment	Stress Ratio R o', + 40	Compression Index	luvnal Vord Ratio	щ	Settlement S = Cc*Ho (1+eo) logB	
$\Delta \sigma = W/b = [1.34x1.07x(17.3-9.8)]/(1.34 = 8.03 kPa$	A PRATON BOLL		-	4	-	in	0.00	-	0'm	122		I+ei annah		
UNDRAINED SHEAR STRENCTH OF FOUNDATION SOIL. $Layor = 1$ from $0 \approx 2 \approx n_s^{-} = c = \sigma \operatorname{trans}(p) = 0.86 - 1 \times (173 - 8.3)$ Assume the avarage 5, of the 1 to oft soil layor can be used to estimat the single layer positive, then the average undrained shear strength in $S_{a} = 0.98 Be_{a}$	1	0 to 2	2.0	1.0	17.3	7.5	14.5	3.0	0.50	2.00	0.667	0.18		
BEARING CAPACITY OF FOUNDATION SOL $q_{ij} = 2N_{i}$ where $N = barring capacity factor, and c = cohesion = undrained shear strength a = 0 for c \leq 5.$			Total Settlement (m): 0.18											
$g_{ab} = 50 \text{ m}^{-2} \text{ m}^{-2}$ $LaCTOR OF SAFETT AGAINST BEARING CAPACITY FAILUP \overline{S} = g_{ab}^{-1} (a_0 = 5.7) (5.05 = 0.03)However, it is noted the average \delta_{ab} of the Istrachtool layer is = 0.00him Geosynthese Residered bearing expanding it invested in$	1 <u>F.</u> kPa	Notes: Disclaimer control Th manager.	Soil Prop No warri	erties are A anty or guar at should no	astee exp	l pressed or in rmad as ang	nplied is made re insering advice,	parding the perfo and the final desi	ermance of an gn thenid bet	y product sinc he responsibil	e the manne ity of the pro	r of handling sject engineer	and use is beyond our r and/or the project	
guession = 0.05 × 6 = 5.76 kPa and the Reinforced burring capacity FS 12.												DATE 10/36/0021 PROJECT:		
Geotube	PROJECT AUTHOR N75C										Particular P	rus.		

LIQUEFACTION

- Physical phenomenon that the soil loses its strength when a shaking or other rapid loading makes the particles to spread, losing confinement/compaction. The mass of soil then behaves as a liquid.
- Geotextile-Encapsulated Sand Elements prevent particles from lateral spreading.
- Over time, sand becomes so tightly packed that no excess hydrostatic pressure is generated to cause liquefaction (wave-induced)

2003 - 2012

95

MISCELANEOUS – BE CREATIVE! ③

Shoreline Protection + Retaining Wall

Before

97

an antip D

HERE'S WHAT YOU SHOULD KEEP IN MIND

HERE'S WHAT YOU SHOULD KEEP IN MIND

When designing with Geosystems, there is no one-size-fits-all!

101

CASE HISTORIES

Sand Filled Mattresses – Case Histories – Haiphong, Vietnam

Sand Filled Mattresses – Case Histories - Haiphong, Vietnam

Sand Filled Mattresses – Case Histories - Haiphong, Vietnam

105

Sand Filled Mattresses – Case Histories - Haiphong, Vietnam

Sand Filled Mattresses – Case Histories - Haiphong, Vietnam

107

Sand Filled Mattresses – Case Histories - Haiphong, Vietnam

109

Geotube[®] – Case Histories – Lake Michigan, Michigan

110

111

113

115

117

121


```
123
```


127

129


```
131
```


133

135

137

139

THANK YOU!

Presenter: Eng. Nathalia Castro, MSc. <u>ncastro@solmax.com</u> Solmax, Engineering Business Manager Dewatering and Marine Group February 05, 2023

GEOSYNTHETICS

Kansas City, February 2023