GEOSYNTHETICS CONFERENCE

Kansas City, Missouri February 5-8, 2023

Fundamentals of Geosynthetics: Types, Functions, Selection and Applications

PM – Applications

Kerry W. Petrasic, P.E. kpetrasic@gfnet.com

PM Session

Thank You to the Following Companies Who Provided Samples for Preparing this Course

Tencate Mirafi Tensar Corp. **EPI – Environmental Protection Inc. Typar – Berry Plastics** Terram **Minerals Technology – CETCO ICA** – Insulation Company of America **Enka Solutions – Low and Bonar GSE Environmental – SOLMAX** Presto Geosystems

Part 4: Functions and Applications

- Proper selection of a geosynthetic
 - Not feasible to cover all possible applications
 - Demonstrate process
 - Emphasis on process and more typical application
 - Will cover examples for most classes of materials covered in Part 3 of this course
 - Sometimes process very straight forward and sometimes more involved
 - Always matching application function and soil with geosynthetic type, fabrication/structure and polymer

		Function/Application															
Material (Typically Best for Application or Most Cost-Efficient)	Filtration	Separation	Stabilization	Reinforcement	Drainage	Impervious Barrier	Weak Subgrade	Load Distribution	Capillary Break	Lateral Drain	Bond Breaker	Protective Layer	Lightweight Fill	Paving	Steep Slope Facing	Compaction Aid	Erosion/Scour Control
Geotextile W-Mono	XX																
Geotextile W-Slit-Film																	X
Geotextile W-Multi-PP			X													X	
Geotextile W-Multi-Mix			X	X	1		1										
Geotextile W-Multi-PET			· ·	X	1		1										
Geotextile NW-NP		XX		ļ					XX	XX	XX	X		X		XX	X
Geotextile NW-SB		X									X			X			
Geogrid Uniax-HDPE/PET				XX													
Geogrid Biaxial-PP			XX												X	X	
Geogrid Biaxial-PET				X											X		
Geogrid Biaxial-FG														X			
Geogrid Triaxial/Multiaxial-PP			XX													X	
Geocell-HDPE/SB-PP							XX	XX							Х		X
Geomembrane						XX						X					
Geosyn Clay Liner (GCL)		1				X	1									1	
Geofoam		1			1			X					XX			1	
Geocomposite Drains		1			XX				X	XX						ĺ	
Paving Composites				1	1									ХХ		1	
Stabilization Composites		1	X		1	('	1									1	
Erosion & Sediment Control (ESC)		1		1	· · ·		1		1							1	XX

Part 4: Functions and Applications – cost considerations

Notes for table:

- Some materials may be able to provide multiple functions
- Where multifunction capability is indicated, it is not universal but depends upon compatibility with site-specific soil conditions
- Co-function capability may exist, however, broad multifunction capability for individual materials is not typical
- Also keep in mind that geosynthetics typically (but not always) carry load in tension (there are exceptions)

Part 4: Functions and Applications – cost considerations

- Cost of geosynthetics is tied heavily to polymer cost
- Material that performs a function with equal or better efficiency having lowest polymer cost per square yard, will likely be most cost-effective
- Both weight per square yard and individual polymer cost are factors to be considered
- Structure also enters into efficiency calculus e.g., geogrid typically more effective as reinforcement than geotextile since:
 - does not rely solely on interface friction, but also bearing of CM ribs on soil
 - grid is more efficient structure (stress transfer with soil)

Part 4: Functions and Applications

Interdependency of Geosynthetic Polymer, Structure and Function

• Proper selection of a geosynthetic can be summed up as follows:

Part 4: Functions and Applications

Example: Interdependency of Geosynthetic Polymer, Structure and Function

Material	Geotextile	
Structure	Nonwoven Needle Punched	
Polymer	Polypropylene	
Function	Filtration	
Application	Separation	

Note: For highway applications this is a versatile multipurpose material (Equally useful in other engineering environments)

- Part 4: Functions and Applications
- Geotextile → Nonwoven Needle-Punched (NWNP-PP)
 - Variety of different functions and applications extremely versatile
 - Structure makes NWNP geotextiles highly survivable – 50% elongation before failure
 - NWNP fabrics are also relatively inexpensive

- Part 4: Functions and Applications Separation
- Geotextile → Nonwoven Needle-Punched (PP)
 - For geotechnical engineering in highway environments, NWNP geotextile is:
 - Useful
 - Effective
 - Cost Efficient
 - "It is a Simple and Powerful Tool"

 In my opinion, for a properly designed and constructed pavement section, nothing is more effective than a NWNP geotextile separator in protecting the integrity and increasing the longevity of a roadway. (Protects integrity of coarse aggregate drain layer)

Geotextile → Nonwoven Needle-Punched (PP)

• Pennsylvania Subgrade Soils:

50% Soils > 35% Fines (-200 sieve) 73% Soils > 20% Fines (-200 sieve)

• Pumping of fines up into granular subbase is big problem

 Study to determine effectiveness of NWNP geotextile as separator between subgrade soil and granular subbase to prevent migration of fines

Part 4: Functions and Applications – Separation Geotextile → Nonwoven Needle-Punched (PP) Study used 1/3 scale load simulator

Schematic of MMLS3 Load Simulator: Internal Track Mechanism, (units in mm)

> Typical Cross Section of Test Bed, (units in inches)

- Geotextile \rightarrow Nonwoven Needle-Punched (PP)
 - Pavement Configurations Modelled in Study:

Roadway Class Modeled	Pavement Type	Pavement Section	Thickness (in)	ATPB (in)	Total Thickness All Bound Layers, (in)	Subbase (in)	Design Life (years)	ESAL's (millions)	ADT (one direction)
Collector	Flexible	Bituminous	8.5	N/A	8.5	6.0	20	1.9	7900
Interstate	Flexible	Concrete*	17.5	N/A	17.5	6.0	20	25.6	25,000
Interstate	Rigid	PCC	13.0	4.0	17.0	4.0	20	36	25,000

Separation geotextile became more efficient as number load cycles increased (as filter cake developed)

Gradation of Filter Cake								
Particle Size Percent Passing of Minus 3								
Sieve No.	Sieve Size, (mm)	Original Subgrade	100k Cycles	200k Cycles	300k Cycles	432k Cycles		
30	0.600	100.0	100.0	100.0	100.0	100.0		
40	0.425	97.7	100.0	100.0	98.8	97.9		
50	0.300	94.3	100.0	100.0	95.7	93.4		
150	0.150	84.0	99.1	94.9	89.3	85.9		
200	0.075	60.2	96.4	84.5	76.9	71.3		

Separation geotextile became more efficient as number load cycles increased (as filter cake developed)

Geotextile → Nonwoven Needle-Punched (PP)
 Study Test Results:

Filter cake gradation eventually matches subgrade gradation (once filter cake fully developed)

No better proof could you have as to the efficiency of the geotextile separator

- Geotextile → Nonwoven Needle-Punched (PP)
 - Function: Separation emphasis on soil retention
 - Geotextile Structure:
 - Felt like fabric
 - 3D matrix of needle-punched fabric provides excellent separation capabilities for wide range of particles sizes (especially for fine-grained soils against coarse open-graded aggregate)
 - Soil particles embed in matrix gradually building up filter cake
 - The thicker (higher oz/sy) the fabric, the greater the separation capacity

- Geotextile → Nonwoven Needle-Punched (PP)
 - Function: Separation emphasis on soil retention
 - Geotextile Structure:
 - Polymer is polypropylene (PP)
 - Effective and cost efficient for application

- Geotextile
 Nonwoven Needle-Punched (PP)
 - Function: Separation emphasis on soil retention (3D fiber matrix)

Fabric structure of 3D matrix of fibers highly efficient at preventing migration of soil particles while permitting flow of water

> Interdependency Structure: NWNP Polymer: Polypropylene Function: Filtration Application: Separation

- Geotextile → Nonwoven Needle-Punched (PP)
 - Since fabric is needle-punched (as opposed to woven), has high elongation prior to failure (typically minimum 50% elongation prior to failure)
 - High elongation translates into excellent survivability during installation and aggressive service conditions
 - 12 oz/sy fabric is efficient separator with fine grained soil and has excellent survivability during installation and in aggressive applications (e.g., rip-rap against soil)
 - PENNDOT standard for all new pavements or complete pavement rehabs

Part 4: Functions and Applications

Example: Interdependency of Geosynthetic Polymer, Structure and Function

Material	Geotextile
Structure	Nonwoven Needle Punched
Polymer	Polypropylene
Function	In-plane Flow (Transmissivity)
Application	Drainage

HOLE SWALLOWS PART OF ROUTE 54 OLD RAILROAD TUNNEL COLLAPSES, CLOSING ROAD IN NESQUEHONING

The Morning Call, March 25, 1994

- Part 4: Functions and Applications Drainage
- Geotextile → Nonwoven Needle Punched
 - Collapsed zone and adjacent side slope excavated and culvert inserted to carry drainage from abandoned railroad tunnel
 - Native soil sandy clay, very wet
 - High moisture presented problem with proper compaction and potential stability and settlement problems when reconstructing the embankment.

Part 4: Functions and Applications – Drainage Geotextile → Nonwoven Needle Punched

- Imported granular fill to replace the native soil was estimated to be \$21/cy (\$39.50/cy in 2022). Due to the high cost of replacement materials, decision to use NWNP geotextile to drain native soil during placement and compaction.
- The polypropylene NWNP geotextile permitted dissipation excess pore pressure developed in the native soil during compaction – accelerating consolidation settlement and increasing strength.
- Field testing conducted to confirm pore pressure response.

- Geotextile → Nonwoven Needle Punched
 - Field trial with geotextile placed at 12-inch vertical spacing in compacted fill
 - Full pore pressure dissipation achieved in test section in approximately 4 days as compared to approximately 25 percent dissipation without geotextile layers in same time period.
 - Using the geotextile at 1 ft intervals in compacted fill, the effective drainage path was reduced from the full height of the slope of 50 feet to 0.5 foot, a factor of 100. This permitted consolidation of the embankment to be completed under the fills own load, by the end of construction (as opposed to almost a year without the geosynthetic).

Part 4: Functions and Applications – Drainage Geotextile → Nonwoven Needle Punched

- Piezometers placed at the base and middle of the slope during construction, confirmed the field trial test pad results.
- Material cost of the geotextile was approximately \$1/sy (\$1.9/sy in 2022).
- In-place costs of the geotextile, along with the on-site fill averaged just over \$3/cy (\$5.70/cy in 2022) for a total cost of \$70k (\$132k in 2022).
- Savings of approximately \$200k over the select-fill alternative, with additional savings from not having to remove the on-site soils from project site (plus significant time savings).

Collapsed Zone of Abandoned RR Tunnel

Part 4: Functions and Applications – Drainage
 Geotextile → Nonwoven Needle Punched

Reconstructed SR54

Compacted Native Clay Fill w/NWNP Geotextile at 12-inch Vertical Lifts (NOT REINFORCEMENT)

N.T.S.

Drainage Culvert Pipe

Abandoned RR Túnnel

Geotextile → Nonwoven Needle-Punched (PP)

Source: FHWA

- Geotextile → Nonwoven Needle-Punched (PP)
 - NW NP fabric can also effectively and efficiently provide several other functions
 - Function: Lateral Drain (similar to capillary break) in-plane flow (transmissivity – ft²/sec)
 - Transmissivity material thickness matters, and therefore compressibility matters
 - If adequate thickness, NW NP has good capacity for in-plane flow
 - Pennsylvania soils are predominantly fine grained (35% A-4 and additional 30% A-2-4 with >20% fines)

- Geotextile → Nonwoven Needle-Punched (PP)
 - Void space vs. normal stress (compression of fabric)
 - No compression NW-NP PP ≈ 87% void space
 - 50 percent compression ≈ 75% void space

Void Space in a NW NP PP Geotextile						
Percent of	Borcont Void Space					
Uncompressed	/%)					
Thickness, (%)	(70)					
100	87					
(No Compression)						
75	83					
50	75					
25	50					

- Geotextile
 Nonwoven Needle-Punched (PP)
 - Thickness vs. normal stress (compression of fabric)
 - Normal stress 4200 psf (34 feet fill) 12 oz/sy fabric retains 50% thickness
 - At 50% thickness still has 75% void space
 - Good transmissivity (good in-plane flow)

Void Space in a NW NP PP Geotextile					
Percent of	Percent Void Space				
Uncompressed	/%)				
Thickness, (%)	(70)				
100	87				
(No Compression)					
75	83				
50	75				
25	50				

Source: Dragana et. Al., 2014

- Geotextile
 Nonwoven Needle-Punched (PP)
 - NW NP serves three functions in reinforced soil slope (cont.)
 - 1) In-plane drainage permitting use of lower permeable soils for RSS
 - 2) Provides edge confinement serving as compaction aid at unsupported face of RSS during construction and in service
 - 3) With six-inch vertical spacing automatically controls lift thickness of compacted fill

NWNP Geotextile for Erosion Control – not primary choice for erosion control but used in appropriate situations (dual function)

Material	Geotextile
Structure	Nonwoven Needle Punched
Polymer	Polypropylene
Function	Separation/Filtration
Application	Erosion Control

Part 4: Functions and Applications – Erosion Control

Geotextile → Nonwoven Needle-Punched (PP)

Source: FHWA

Geotextile → Nonwoven Needle-Punched (PP)

Source: PENNDOT

Geotextile Nonwoven Needle-Punched (PP)

Source: Erosion Control Products

Source: PENNDOT

Material	Geotextile
Structure	Nonwoven Needle Punched
Polymer	Polypropylene
Function	Stress Relief/Bond Breaker
Application	Pavement Overlay Interlayer

- Geotextile → Nonwoven Needle-Punched (PP)
 - Function: Bond Breaker
 - NP fabric results in 3D matrix of loosely bound staple fibers
 - Given adequate thickness, loosely bound fibers prevent bonding of concrete pavement overlays to underlying concrete pavement surfaces

NWNP Geotextile ~ Interlayer

Source: OK/AR Chapter, ACPA

- Geotextile \rightarrow Nonwoven Needle-Punched (PP)
 - Function: Bond Breaker

≈ ¼ in thick
13-15 oz/sy

Source: OK/AR Chapter, ACPA

- Geotextile \rightarrow Nonwoven Needle-Punched (PP)
 - Function: Bond Breaker

Source: OK/AR Chapter, ACPA

- - University of Munich Study
 - Provides Drainage
 - Prevents Erosion of Cement Treated Base
 - Prevents Reflective Cracking
 - Provides Uniform Bearing Support During Curling/Warping

Part 4: Functions and Applications Geotextile → Nonwoven Needle-Punched (PP)

Geotextile for prevention of reflective cracking in asphalt overlay

Part 4: Functions and Applications Geotextile → Nonwoven Needle-Punched (PP)

Source: Propex

Example: Interdependency of Geosynthetic Polymer, Structure and Function

Material	Geotextile	
Structure	Woven Monofilament	
Polymer	Polypropylene	
Function	Filtration	
Application	Drainage	

Interdependency of Geosynthetic Polymer, Structure and Function

Woven Monofilament Geotextile

Product Designation	Percent	Permittivity	Mass per
	Open Area		Unit Area
	<mark>(%)</mark>	(sec ⁻¹)	(lb/sy)
FW402	10	2.10	0.41
FW403	6	0.96	0.56
FW500	3	0.20	0.53
FW404	1	0.90	0.58

Same mass per unit area but very different POA and Permittivity – controlled by fabric structure

Interdependency of Geosynthetic Polymer, Structure and Function

Multiple finer calendered filaments MD and CD

Structure

Interdependency of Geosynthetic Polymer, Structure and Function

3

FW500

POA

Structure

Single calendered filaments one direction, Multiple calendered filaments other direction

Interdependency of Geosynthetic Polymer, Structure and Function

Interdependency of Geosynthetic Polymer, Structure and Function

POA

Structure

Single filaments MD and CD, **Calendered one direction**

Interdependency of Geosynthetic Polymer, Structure and Function

Woven Monofilament Geotextile

Product Designation	Percent	Permittivity	Mass per
	Open Area		Unit Area
	<mark>(%)</mark>	(sec ⁻¹)	(lb/sy)
FW402	10	2.10	0.41
FW403	6	0.96	0.56
FW500	3	0.20	0.53
FW404	1	0.90	0.58

Same mass per unit area but very different POA and Permittivity – controlled by fabric structure Part 4: Functions and Applications – Filtration/Drainage Example: Interdependency of Geosynthetic Polymer, Structure and Function

- Geotextile \rightarrow Woven Monofilament
 - Function: Filtration emphasis on water flow as opposed to material retention
 - Cross-plane flow permittivity (sec⁻¹) or cross plane flow rate
 - Woven monofilament provides variable AOS and POA depending upon material structure (i.e., filament density and shape – as seen above)

- Part 4: Functions and Applications Filtration/Drainage Example: Interdependency of Geosynthetic Polymer, Structure and Function
- Geotextile \rightarrow Woven Monofilament
 - Structure can prevent clogging fines can pass freely
 - May not be ideal if water flowing <u>from</u> high fines content soil
 - Can also co-function as separator if between fine sand and gravel

Filtration/Drainage – Woven Monofilament Geotextile

- Proper selection of a geosynthetic a more detailed example
 - Remember always matching application function and soil with geosynthetic type, fabrication/structure and polymer
 - Sometimes process very straight forward and sometimes more involved
 - The following is an example of a more involved process but with a very large footprint (material serving as a statewide standard specification)

Selection of geotextile filter for pavement base drain

Filtration/Drainage – This application needs to favor water flow over soil retention

Test Apparatus – Geotextile for Pavement Base Drain

Test Apparatus – Geotextile for Pavement Base Drain

Geotextile Sample

Test Apparatus – Geotextile for Pavement Base Drain

Standpipe to monitor head and pump control

Due to 3D matrix of fine fibers, nonwoven needlepunched fabric favors separation – not water flow

0.4m

Nonwoven Needle-Punched Fabric

Colorized 3D

Part 4: Functions and Applications – Filtration/Drainage

Impact of Calendering Filaments (Equivalent Filament Counts)

Woven Monofilament Geotextile

66

Woven Monofilament Fabric Calendered Two Directions, POA = 4

Woven Monofilament Fabric Calendered One Direction, POA = 10

Woven Monofilament Fabric Calendered Two Directions, POA = 4

Woven Monofilament Fabric Calendered One Direction, POA = 10

Fabric Rotated 45°

Very low in-plane void space

Significant in-plane void space

Two materials have same weight, same fiber count, same cost – difference is the structure

Woven Monofilament Fabric Calendered One Direction, POA = 10 Colorized Isometric View

Material	Geotextile		
Structure	Woven Slit Film and		
	Nonwoven Needle Punched		
Polymer	Polypropylene		
Function	Filtration		
Application	Erosion and Sediment Control		

Part 4: Functions and Applications – Erosion and Sediment Control

- Erosion and sediment control (ESC) is an area of the geosynthetics industry that has experienced rapid growth and regular innovation
- ESC materials becoming more effective, with increasing product sophistication
- Applications cover broad range of situations from highly aggressive erosional conditions, an aid in establishing vegetation and controlling sediments transported from areas experiencing erosion.

Part 4: Functions and Applications – Erosion and Sediment Control

- Recall that the Geosynthetics industry has its origins in ESC (1958 COE application discussed earlier)
- Erosion occurs when soil particles are dislodged as the result of forces from wind or surface water flow
- Sedimentation occurs when eroded soil particles, or sediments, transported by wind or water, or deposited at another location
- Both erosion and sedimentation have negative consequences

- Erosion results in loss of vegetation, reduction of infiltration, structural instability and sedimentation
- Sedimentation is a consequence of erosion
- Some impacts of sedimentation are poor water quality and the potential for increased flooding from loss of flow capacity and clogged drains
- Sediment control attempts to address some of the consequences of erosion, while effective erosion control prevents problems from ever developing

- 1992 paper by Theisen states that cumulative research suggests excessive sediment in our waterways is earth's most prevalent contaminant
- Paper argues erosion and sedimentation are source of ever increasing economic and social losses
- Losses result from reductions in farmland, fishery yields, species diversity and navigable waterways
- And that these losses exceed those caused by other pollutants such as hazardous wastes, smog or ground water contamination

- January 20, 2022 Article in The Philadelphia Inquirer
- Headline: Nearly 2,400 more miles of Pennsylvania's streams are impaired now compared to just two years ago
- One-third of all Pennsylvania waterways (nearly 28,000 miles) are now considered polluted enough to harm wildlife, recreation, or drinking water (according to report by PADEP)
- Pollutants include ammonia, nitrates, nitrites, nitrogen, phosphates, calcium, magnesium, chloride, sulfates, and dissolved solids
- These are all runoff pollutants

• With this perspective, although less dramatic and visible than many other geosynthetic applications, it could be argued that applications of geosynthetics in erosion and sediment control, might be considered among the most important uses relative to their resulting impact

- ESC applications can be both temporary or permanent
- For geosynthetics, sediment control applications are often temporary (often until erosion control measures in full effect)
- Erosion control applications can be temporary or permanent
- Applications of geosynthetics in both erosion and sedimentation control can vary considerably

Part 4: Functions and Applications

Material	Geotextile
Structure	Woven Slit Film and
	Nonwoven Needle Punched
Polymer	Polypropylene
Function	Filtration
Application	Sediment Control

- Geotextile → Woven Slit-Film (W-SF)
 - Function: Sediment Control (Silt Fence)
 - Cross plane flow permittivity (sec⁻¹) or volumetric flow rate
 - Capture sediments to prevent transport
 - AOS ≈ 0.425mm (No. 40 sieve) Good
 - Permittivity ≈ 0.5 sec⁻¹ Low
 - Flow Rate ≈ 4 gal/min/ft² Low

Thin film = very flexible Close weave = Low Permittivity

- Geotextile → Woven Slit-Film (W-SF)
 - Consequently W-SF capture soil sediments while permitting water to pass
 - Like a soil dam retain soil sediment while water flows over top of trapped sediments through W-SF fabric
 - High strength, loose weave, very flexible and low cost
 - Material favors soil retention as opposed to water flow

- Wattles and Filter Socks
 - Structurally very similar
 - Wattles consist of a straw or coir tube held together with a fine mesh netting
 - Filter socks consist of a NWNP geotextile sock filled with mulch or other filter media

- Sediment filter bags (a.k.a. Dewatering Bags)
- Typically manufactured from nonwoven needle-punched (NWNP) geotextile
- Can be manufacture from woven multifilament geotextile if needed, but will increase cost
- Sediment laden water pumped into bag; Sediments trapped in bag as water discharge through filter bag face

- Sediment Filter Bags → Nonwoven Needle-Punched (NWNP) Geotextile (Typically)
 - Function: Sediment Control
 - Cross plane flow permittivity (sec⁻¹) or volumetric flow rate
 - But also soil retention
 - 3D structure of NWNP fabric traps sediments preventing transport
 - Good compromise of AOS (≈ 0.2 mm) and permittivity (≈ 1.2 sec⁻¹)
 - Typically 8 or 10 oz/sy NWNP geotextile

Part 4: Functions and Applications

Example: Interdependency of Geosynthetic Polymer, Structure and Function

Material	Geotextile
Structure	Woven Multifilament
Polymer	Polypropylene
Function	Filtration
Application	Erosion Control/Beach
	Restoration

Part 4: Functions and Applications – Erosion Control

Dredging Operation for Beach Restoration

\$18 million sand project to restore 3.5 miles of beach, from Jetty Park to Cocoa Beach Pier

Part 4: Functions and Applications – Erosion Control

- Geotextile Bags/Tubes
 → Woven Multifilament Geotextile
 - Primary cost of beach restoration is dredging ("excavation and placement of sand")
 - What if that cost could be eliminated and the process "performed" by nature

Part 4: Functions and Applications – Beach Restoration and Protection

• Geotextile Bags/Tubes \rightarrow Woven Multifilament Geotextile

Natural process of erosion

Endangers property
Threatens ecosystems
Costs a lot to fix

sand

Natural wave action can slowly erode freshly renourished beaches, but severe storms can create devastating waves that can cut sand out of a beach and wash it out to sea.

waves

One hurricane can swallow more than a hundred feet of beach, destroy fragile beach ecosystems, eliminate dune formations and threaten homes and businesses.

TenCate Geotube® protection

Protects coastlines
Maintains ecosystems
Permanent solution

sand

A TenCate Geotube[®] is made from **durable synthetic fibers** woven into the shape of a container and filled with dredged sand during the beach renourishment process. It is then buried beneath the high tide line. The immense waves caused by hurricanes and super storms **are blocked** by the **geocontainers**.

waves

The anchored geotextile prevents the foundational sand from eroding. TenCate Geotube[®] technology has proven adept over the past 50 years at protecting shorelines, the environment, properties and a community's investment in its beaches.

Source: Tencate

• Geotextile Bags/Tubes \rightarrow Woven Multifilament Geotextile

Source: Tencate

• Geotextile Bags/Tubes \rightarrow Woven Multifilament Geotextile

• Geotextile Bags/Tubes \rightarrow Woven Multifilament Geotextile

- Part 4: Functions and Applications Sediment Control
- Geotextile Bags/Tubes → Woven Multifilament Geotextile

Part 4: Functions and Applications – Stabilization vs Reinforcement

• Detour – Stabilization versus Reinforcement

- Sometimes two terms used interchangeably, but there is difference
- Function (reinforcement vs stabilization) depends upon structure and polymer type
- We will refer to stabilization as "passive" and reinforcement as "active"
- Take a few minutes to differentiate between the two functions

98

Part 4: Functions and Applications – Stabilization vs Reinforcement

• Stabilization

- Stabilization "Passive"
- Action similar to Poisson effect
- Under a compressive load material deforms in direction of load, expanding perpendicular to load
- Similarly, under compressive load aggregate wants to spread laterally

Part 4: Functions and Applications – Stabilization vs Reinforcement

• Stabilization

- Geosynthetic layer resists the lateral deformation
- Geocell Cells resist deformation of soil/aggregate in cell being loaded
- Geogrid Grid structure resists deformation soil/aggregate (interlock with material embedded in apertures or openings of geogrid)
- Geotextile Fabric resists deformation of soil/aggregate in stress transfer at interface of fabric and fill

Part 4: Functions and Applications – Stabilization vs Reinforcement Stabilization

- The geosynthetic confines the soil/aggregate resisting lateral movement and enabling more efficient mobilization of soil/aggregate shear strength
- By resisting lateral movement, confining stress is increased resulting in better mobilization of shear strength

Soil Shear Strength Equation: $S = c + (\sigma) tan \phi$ where:

S = shear strength σ = overburden/confining pressure ϕ = soil/aggregate friction angle

Part 4: Functions and Applications – Stabilization vs Reinforcement

• Stabilization

Soil Shear Strength Equation:

 $S = c + (\sigma) tan \phi$

Mechanism: Confinement

Chen, Cheng & McDowell, & Thom, Nick. (2013). A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling. Geomechanics and Geoengineering. 8. 10.1080/17486025.2013.805253.

Chen, Cheng & McDov ell, & Thom, Nick. (2013). A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling. Geomechanics and Geoengineering. 8. 10.1080/17486025.2013.805253.

Geosynthetic Layer: Geocell, Geogrid or Geotextile

Part 4: Functions and Applications – Stabilization vs Reinforcement

Reinforcement

- Reinforcement "Active"
- Geosynthetic works in conjunction with soil
- Adds strength to system
- Localized interlock and friction to mobilize tensile strength of geogrid
- High Tensile Stress Mobilized
- High Tensile Strength Required
- Analogous to reinforced concrete

Part 4: Functions and Applications

- Stabilization vs Reinforcement Summary
 - Stabilization = "Passive"
 - Confinement
 - Better mobilization of available shear strength
 - Reinforcement = "Active"
 - Independent element
 - Adds strength to system

Likely Both Stabilization and Reinforcem Functions Exhib

Part 4: Functions and Applications

Material	Geogrid
Structure	Uniaxial
Polymer	PET/HDPE
Function	Reinforcement
Application	Reinforced Slopes

Part 4: Functions and Applications – Reinforcement

- Geogrid \rightarrow Uniaxial
 - Function: Reinforcement supplementing soil shear strength by adding tensile reinforcement
 - Use in slope stability application or foundation reinforcement
 - Provides water proofing membrane
 - Two primary polymers used for uniaxial geogrids are HDPE and PET

Part 4: Functions and Applications – Reinforcement

- Geogrid → Uniaxial Reinforcement Design Strength
 - Determine the required overall reduction factor (combined factor of safety – like LRFD reduction factors)

 $RF_{OV} = RF_{CR} \times RF_{ID} \times RF_{D}$

where:

 RF_{OV} = combined (overall) reduction factor (dimensionless) RF_{CR} = creep reduction factor (dimensionless) RF_{ID} = installation damage reduction factor (dimensionless) RF_{D} = durability reduction factor (dimensionless) Part 4: Functions and Applications – Reinforcement

- Geogrid → Uniaxial Reinforcement Design Strength
 - Determining Creep Reduction Factor (RF_{CR}) Ratio of T_{ULT} to creeplimiting strength

Time-dependent Strain Curve with Primary, Secondary and Tertiary Stages

Creep Resistance = Need to Predict Start of Tertiary Stage

Time-dependent Strain Curve with Primary, Secondary and Tertiary Stages
Part 4: Functions and Applications – Reinforcement
Geogrid → Uniaxial – Reinforcement Design Strength
Determining Creep Reduction Factor (RF_{CR})

Time-Temperature Creep Testing Sustained Load at Stepped Stresses and Temperatures

Creep Testing of Geogrid

- - Determining Creep Reduction Factor (RF_{CR})

(Temperature: T3 > T2 > T1 and Stress: S2 > S1)

- - Determining Creep Reduction Factor (RF_{CR})

Predict Long Term Allowable Strength (T_{LA}) at 10⁶ hours (≈ 110 years)

Method to Determine Creep Reduction Factor Using Creep Rupture Curve for a Tensile Creep Test

• Geogrid \rightarrow Uniaxial

 $T_{LA} = T_{ULT} / RF_{OV}$

So:

 $RF_{CR} = T_{ULT}/T_{LA} = Creep Reduction Factor$

- Geogrid → Uniaxial HDPE vs Uniaxial PET
 - Both have high strength
 - HDPE lower cost than PET, but PET RF_{CR} lower than HDPE
 - The two counter each other so that product cost is comparable
 - Typical Roll Sizes: 4.83 x 200 ft HDPE vs. 12 x 150 ft PET
 - HDPE more manageable in handling while PET covers more area project needs and contractor placement method may dictate preference
 - Note: Overlap of adjacent strips of reinforcement not necessary just butt edges
 - Slopes as steep as 0.5H:1V (63°) constructed if steeper, wall design requirements will control
 - Typical maximum vertical spacing is 18 inches

- Geogrid
 → Uniaxial Reinforcement
 - Good application Bad execution! (Details can be very important)

Active traffic on interstate highway

Failure of temporary shoring failure on bridge construction – temporary shoring used uniaxial geogrid reinforcement with gabion facing

- Geogrid \rightarrow Uniaxial Reinforcement
 - Good application Bad execution! (Details can be very important)

Do you see a problem in this photo?

See Next Slide

• Geogrid \rightarrow Uniaxial Reinforcement

116

• Good application – Bad execution! (Details can be very important)

Note selvage of geogrid at face of temporary support

Uniaxial geogrid was placed in the wrong direction. Selvage is machine direction – strong direction. Uniaxial geogrid should have been placed with machine direction perpendicular to shoring face (the gabions)

- Geogrid \rightarrow Uniaxial Reinforcement
 - Good application Bad execution! (Details can be very important)

Note selvage of geogrid at face of temporary support

Only fraction of strength in cross machine direction as opposed to machine (strong) direction for uniaxial geogrid.

Reinforced Soil Slope: 0.5:1 Slope (63°) 50 feet high 1100 feet long 180° bend Vegetated Face

Google Earth

Material	Geogrid and Geotextile				
Structure	Uniaxial (Geogrid) and				
	Woven (Geotextile)				
Polymer	PET				
Function	Reinforcement				
Application	Sinkhole Safety Net				

- Geogrid \rightarrow Uniaxial
 - Function: Reinforcement supplementing soil shear strength by adding tensile reinforcement
 - Application: Sinkhole Safety Net
 - Provide temporary support for roadway section in active sinkhole area
 - Not a solution to the primary problem sinkhole development
 - Will not prevent sinkhole activity
 - Provides a means of better managing the problem and providing temporary protection

SR422 Sinkhole Safety Net – Site Layout and Sinkhole History

Geogrid \rightarrow Uniaxial \rightarrow Sinkhole Safety Net

- Significant Factors (...understanding of local conditions):
 - 1) Carbonate Geology
 - 2) Local Surface Mining Operation (Quarry)
 - 3) Local Topography
 - 4) Local Development w/o Adequate Storm Water Control (Control of Surface Water)

SR422 Sinkhole Safety Net – Significant Factors Ridge Rd

2) Local Surface Mining/ Limestone Quarry

Palmyra, PA

Palmyra

© 2017 Google C 2017 Europa Technologies

Pine

0/323

DF B75

ShadyLn

Oak Lr

328

Sinkhole

Location

Hic₂

parliamen

1) Carbonate Geology

in Region

Caarlansull

SR422

SR422 Sinkhole Safety Net – Significant Factors Ridge Rd

3) Local Topography

Unlined Swale

Palmyra, P

SR422 Local High **Point - Approx.** Elev. 465 ft

Negative Grade Palmyra 117

SR422 Local Low **Point - Approx.** E Pine S **Elev. 428 ft**

Location

Sinkhole

© 2017 Google G © 2017 Europa Technologies

dalw

22

00-01

SR422 Local High **Point - Approx. Elev. 441 ft**

Shaduta

Oak Ln Parliament

328

Hicto

SR422

mialsho

Negative Grade

DF B75

South-Ave-

SR422 Sinkhole Safety Net – Significant Factors

E Gherry St Plum-Alley 4) Control of Starface Water Peach Alley (i.e. Storm Drains)

E-Walnut-St

EpPine St

E-Birch-St

ce-S

S-P

E Cyress St

pycamore-Ln

E-Fir-St-

S

-Sandalwood-Dr-----

© 2017 Google © 2017 Europa Technologies

iza-Di

-Summit-Di-

Brunswick-En-J

= Storm Drain Inlet

Coogle oorth

R425

adv-I-

Part 4: Functions and Applications

SR422 Sinkhole Limits of Drainage Basin

Part 4: Functions and Applications – Reinforcement Geogrid → Uniaxial → Sinkhole Safety Net

- Design based upon using catenary equation for uniform load
- Design calcs conducted over labor day weekend with internet as primary available technical reference, therefore, a number of (often highly conservative) assumptions were made
- Goal: <u>Estimate</u> required geosynthetic tensile reinforcement to support design load given following criteria:
 - 0.67 foot (8 inch) maximum deflection
 - 8-foot diameter sinkhole
 - Geometry yields 2 percent elongation for geosynthetic reinforcement (Design strength at 2% strain)

 Based upon above design assumptions, using catenary formula for 8-foot length and 8-inch (0.67 ft) sag, yielded required tensile strength of 18.1 kips/foot of geosynthetic width

- Target design requirements yielded a 2 percent tensile elongation – this significantly reduces tensile force that can be used from the high strength geosynthetics
- Provides system having significant reserve capacity to accommodate subsidence events from anticipated future sinkhole activity

• Due to limited material availability, three different uniaxial geosynthetic products were used in the reinforced section

Product Type	Designation	Est. 2% Tensile Strength, (k/ft)	No. Layers	Total 2% Tensile Strength, (k/ft)	Ult. Tensile Strength, (k/ft)
High Strength Woven Polyester Geotextile	PET1000/100	5.6	2	11.2	68.5
High Strength Polyester Geogrid	24XT	1.5	4	6.0	27.4
High Strength Polyester Geogrid	22XT	1.4	2	2.8	20.6
		Sum of Layers	8	20.0	-

 Total 2% tensile strength provided = 20.0 k/ft > 18.1 k/ft required

Typical Section – Flexible Sinkhole Safety Net – Roadway (N.T.S.) Part 4: Functions and Applications – Reinforcement Geogrid → Uniaxial → Sinkhole Safety Net

Roller Grips – Geosynthetic Tensile Strength Testing Roller Grip – Geosynthetic wrapped around roller and grips itself by friction – no stress concentration

Roller Grips No Stress Concentration

Part 4: Functions and Applications – Reinforcement Geogrid → Uniaxial → Sinkhole Safety Net

 Stabilization – Geocell, Biaxial/Multiaxial Geogrid or Geotextile

Material	Geocell	
Structure	Welded Expanding Cells (Various Depths)	
Polymer	HDPE and Polypropylene	
Function	Stabilization	
Application	Confinement/Load Distribution	Source: Presto Geosystems
Material	Geogrid	2211
Structure	Biaxial/Multiaxial	
Polymer	Polypropylene	
Function	Stabilization	PASE 6
Application	Confinement/Load Distribution	Sample Courtesy of Tensar
Material	Geotextile	
Structure	Woven Multifilament	
Polymer	Polypropylene	
Function	Stabilization	
Application	Confinement/Load Distribution	Source: Beco Bermuller

- Geocell, Geogrid and Woven Multifilament Geotextile \rightarrow PP
 - Function: Stabilization
 - These material act to confine fill soil/aggregate
 - Confinement enables better mobilization of fill material shear strength
 - Long-term design strength (i.e., creep) not an issue with confinement applications for PP geosynthetics (low stress application)

Part 4: Functions and Applications – Stabilization/Load Distribution

- Confinement Lateral Restraint
- Passive Resistance
- Load Distribution
- Low Subgrade Stress
- Low Geogrid Tensile Stress
- Low Geogrid Strain
- No Reinforcement Function

Part 4: Functions and Applications – Stabilization vs Reinforcement

Stabilization – Mechanism is Confinement

Soil Shear Strength Equation: $S = c + \sigma tan \phi$ where:

S = shear strength σ = overburden/confining pressure ϕ = soil/aggregate friction angle

Better Mobilize Soil/Aggregate Shear Strength

Chen, Cheng & McDowell, & Thom, Nick. (2013). A study of geogrid-reinforced ballast using laboratory pull-out tests and discrete element modelling. Geomechanics and Geoengineering. 8. 10.1080/17486025.2013.805253.

Chen, Cheng & McDowell, & Thom, Nick. (2013). A study of geogrid-reinforced ballast using aboratory pull-out tests and discrete element modelling. Geomechanics and Geoengineering. 8. 10.1080/17486025.2013.805253.

Geosynthetic Layer: Geocell, Geogrid or Geotextile

• Stabilization – Geocell, Biaxial/Multiaxial Geogrid or Geotextile

Material	Efficiency	Increasing Efficiency	Relative Cost*	Comments
Geocell	Best		\$\$\$\$	Most efficient; Best for severe conditions; May be most cost effective for same required performance
Multiaxial Geogrid	Very Good		\$	Most efficient performance of "sheet" materials; Most cost efficient "sheet" material
Biaxial Geogrid	Better		\$\$	More cost efficient than geotextile for same performance
Geotextile	Good		\$\$\$	Least performance efficient; Least cost efficient of all materials for required performance

*Material cost – not in place application cost

Material	Geocell*
Structure	Welded Expanding Cells
Polymer	HDPE/Polypropylene
Function	Load Distribution
Application	Soft Subgrades/Foundations, Pavement Section Reduction

*For less severe conditions, or just base thickness reduction, a multiaxial geogrid may be a more cost efficient.

- Geocell → HDPE and PP Spunbond
 - Function: Load Distribution
 - Ideal for efficient distribution of concentrated loads on soft/weak and/or compressible subgrades and foundations
 - Cells surrounding loaded cell resist lateral deformation efficiently distributing the vertical applied load
 - Concept by military for rapid runway construction
 - HDPE is perforated rigid wall and PP is flexible solid wall
 - Flexible wall may require more care in backfilling however, although not as rigid as HDPE, found them to be of substantial wall thickness (not light-duty PP spunbond material)

Part 4: Functions and Applications – Load Distribution ● Geocell → HDPE and PP Spunbond

- Relocation of local road for Rt 100 bypass in Lehigh County, PA
- Load distribution over deep soft subgrade (> 12-foot depth)
- Extremely soft and wet consistency of stiff toothpaste
- Combination of NWNP Geotextile and Geocell used to distribute construction and service loads
- Incorporated into extra depth subbase layer
- Highly efficient load distribution
- Permitted construction in very unfavorable conditions and effective performance of roadway section in service

- Geocell → Load Distribution
 - St. Davids, PA
 - Reconstruction of Wayne Ave under SEPTA Overpass
 - Limited vertical clearance
 - Locally low area poor drainage
 - Local business community

Part 4: Functions and Applications – Load Distribution ● Geocell → Load Distribution

Part 4: Functions and Applications – Load Distribution ● Geocell → Load Distribution

- Geocell → Load Distribution
 - Soft wet soil subgrade
 - Multiple utilities
 - Rutting of asphalt concrete base course immediately after placement
 - Undercutting not feasible
 - Raising subgrade elevation not feasible
 - Class 4 geotextile separator over subgrade with geocell incorporated into subbase coarse aggregate
 - Permitted reconstruction of asphalt concrete pavement bad to original finished grade

Part 4: Functions and Applications – Load Distribution Geocell → Load Distribution

Part 4: Functions and Applications – Load Distribution ● Geocell → Load Distribution

Part 4: Functions and Applications – Some Other Applications

- Geocell → HDPE and PP Spunbond
 - Also effective as steep slope facing for vegetated reinforced slopes
 - Flexible PP may have concerns with UV degradation for this application if stepped wall or slope face (exposed surfaces)
 - Perforated HDPE may require coarse aggregate fill in front face cell unless solid wall geocell is available
 - Geocell can also be used as slope facing for erosion control in more aggressive conditions (e.g., along waterways)
 - Other applications: construction of stable low-volume gravel road, sound barrier, rockfall or avalanche barrier

Likely Both Stabilization and Reinforcement Functions Exhibited

Load Transfer Platform

Material	Geogrid
Structure	Uniaxial
Polymer	PET/HDPE
Function	Reinforcement
Application	Load Transfer Platform

Part 4: Functions and Applications – Reinforcement Geogrid \rightarrow Uniaxial \rightarrow Load Transfer Platform

- Uniaxial geogrid primarily serving reinforcement function
- Example: Column supported embankment with geosynthetic reinforcement (Load Transfer Platform)
- Three design/construction options:
 - Uniaxial reinforcement in primary (long) axis with sufficient number layers in secondary (short) axis to prevent lateral spreading likely most efficient placement for construction
 - Uniaxial reinforcement in alternating directions with each layer (like a two-way reinforced concrete slab)
 - Creep resistant biaxial reinforcement (PET)

Column Supported Embankment with Geosynthetic Reinforced Load Transfer Platform

Reference: Geosynthetic-Reinforced Column-Support Embankment Design Guidelines (Collins Method) On-line: https://www.thecollingroup.com/wp-content/uploads/2020/11/Collin_Han_Haung-NAGS-2005.pdf

Part 4: Functions and Applications – Reinforcement Geogrid \rightarrow Uniaxial \rightarrow Load Transfer Platform

End Bearing or Friction Piles

Source: Canadian Geotechnical Journal

Part 4: Functions and Applications – Reinforcement Geogrid \rightarrow Uniaxial \rightarrow Load Transfer Platform

- Since a reinforcement foundation, important that creep resistance geosynthetic be used for the reinforcement
- During construction of platform, may be serving more of a stabilization function – facilitates construction of the platform

Material	Geofoam
Structure	Expanded Polystyrene
Polymer	Polystyrene
Function	Load Reduction
Application	Various

- Geofoam \rightarrow EPS
 - Function: Lightweight fill
 - Can be good option to reduce load where insufficient foundation soil shear strength or excessive settlement is an issue
 - Very lightweight densities from 0.7 to 2.85 pcf,
 - Compressive strength at one percent strain from 2.2 to 18.6 psi respectively

- Geofoam \rightarrow EPS
 - Soil cover required to protect EPS geofoam from high contact pressure surface loads
 - Compacted soil weighs ≈ 0.85 psi per foot of thickness so the overburden pressure of 4 to 5 ft of soil cover ≈ 4 psi
 - Soil cover overburden pressure controls required EPS type

 typically EPS29 top layer (capping) and EPS19 for
 subsequent layers

- Geofoam \rightarrow EPS
 - General concept is to keep post construction overburden stress less than or equal to existing vertical overburden stress, or below project-specific critical overburden stress
 – load balancing
 - May have to remove sufficient existing material to create final load balanced condition, or net negative final overburden stress

- Geofoam \rightarrow EPS
 - Can also significantly reduce lateral loads (horizontal stress) using geofoam since EPS blocks are rigid
 - Must have adequate surface load distribution and adequate EPS compressive strength to prevent excessive short- and long-term compression of geofoam

• Geofoam \rightarrow EPS

 Since EPS density much lower than water, will have to anchor down blocks if used below water table or in areas with tidal fluctuations

• Geofoam \rightarrow EPS

- Significant concern is environments with hydrocarbons (liquid or vapor)
- In highway applications, fuel spills (gasoline or diesel) are potential problem
- Must protect EPS from both liquid and vapor using appropriate hydrocarbon-resistant geomembrane (full encapsulation)

- Geofoam \rightarrow EPS
 - Note: current best geomembrane option is an LLDPE with an EVOH copolymer core
 - EVOH = Ethylene Vinyl Alcohol = <u>copolymer</u> of ethylene and vinyl alcohol
 - Copolymer is a polymer formed when two (or more) different types of monomers are linked in the same polymer chain

- Geofoam → Protective Membrane
 - EVOH is a polar molecule while hydrocarbons such as gasoline and diesel are non-polar molecules therefore they "repel" one another
 - LLDPE and HDPE are non-polar resist degradation from hydrocarbons, <u>BUT</u> permeable to vapors

- Geofoam → Other Applications
 - While very lightweight, EPS is a relatively high-cost fill material, and manufacturing facilities are limited
 - Material, transportation and protection (i.e., geomembrane) costs must all be considered relative to other alternatives
 - In the right circumstances, EPS can be the most cost-effective solution, and with proper protection, risks are low relative to much more complicated foundation or support systems with complex subsurface conditions

Source: EPS Alliance

Source: EPS Alliance

Energy Attenuation for Rockfall Protection Tunnel (Turkey)

Source: my.civil.utah.edu

Material	Geofoam				
Structure	Expanded Polystyrene				
Polymer	Polystyrene				
Function	Load Reduction				
	Lightweight Fill – Embankment				
Application	Construction Over Soft				
	Foundation				

- Geofoam → Expanded Polystyrene
 - Function: Lightweight Fill for Embankment Over Weak Foundation

- Removal of 3-span structure over abandoned RR bed/trail
- Widening of roadway to accommodate climbing lane
- Large embankment fill
- Relocated trail
- Adjacent wetland

- Alluvial clay layer
- Low blow counts (as low as 3)
- Lab results indicated very high fines content (Silts and clays up to 88%)
- Possible wetland deposits

1-2-2-5	र में स्	10 His 12				*******		*******		*******		******	110000001
testo.	Terres V	or shire the	MA ID et eler								- h		1260
RAY	SASAMON	XCLAS	100000000000000000000000000000000000000	1 1 1		******		*******	1111	*****	145		120120128
and and							The second		fandar star	ويعتبنانه	2		11.00 Carter
	1410 1 5/19	IL-THOWAY	11	ti destratan de	nên çençer			- Alere	134) 11-34		44	1.9200	1250
ST ST	TI NY	EGINT.	ZORAN		x			11	· · ····			ananan.	Sustania.
	L		10110100							actor and	1		
- BE	THAND	V 24 H											1220
12.0		NERVERVE	101001000		nen en er	1 1650 183 18	NEIVEIVEI	EIXEIE	Source of				
SILT	S TRAVE	SAND											
1.1.2-	ent.				-			11				*******	1230
20-120-0	CONTRACTOR OF	AL 91 1213	ILT.	internet.		JA	V	ourse.		1.040			0.00
0.0	the state of	11.7:-1-14	AND				Y			******		********	*******
16.9	1-0-6/-21	and a second					-					A	*******
	CA	T. 175	1000000	1.15115				20120	(SU (SU				1220
Bertine Tor	- Articles	-				himi		in the second		Listeria a		2012012011	head and a second second
0.01020	- SHOW - L	- Jak ha	THE PARTY			- 1 1 1 -	11-11-11-1		1141141				
65.2 NTC	ANOSTONE												1216
3/11/1	ALLOST ONL	A DAMAGE		numtation	ntententer	under de la	-	A THURSDAY		LTV-TANTU	here the table	Amorecen	Contraction of the second
		STA . 13	6450.00	T									
T.T. DIGME		BEG10.	ENSONKME	T. BENCHI	NG							+50	
-strpst g	012	1.00.00.0	1.46.14464.1			******	1	A	*******	*****		·******	1.2002001
				anter a series of the series o	en els bis els els	*******						1119	
		11/1/1	AREA OF S	HEAR STREE	GTH INCRE	ASE DUE						s.,	
		22	TO CONSO	LIDATION UN	IDER EKSTI	IG FILL							
in naire		(1944) (1944)				******		(anan	1940.00				

- Alternatives Selected:
 - Geofoam unit weight of 1.35 pcf compared to 120 pcf for soil
 - Geofoam significantly decreased load placed on existing soft foundation soils at base of fill
 - Rock buttress at toe

 Geofoam completely encapsulated in hydrocarbon resistant geomembrane for protection

- Geofoam Cap Block = \$100/cy (installed)
- Geofoam Fill Block = \$160/cy (installed)
- Cap block of higher density (and therefore compressive strength) to resist traffic loads
- 2019 Data
- Note cap block typically higher unit cost due to higher density

- Geofoam → Expanded Polystyrene
- Geomembrane = \$65/sy (installed) – high
- Hydrocarbon resistant

Material	Geogrid
Structure	Grid
Polymer	Polypropylene
Function	Confinement
Application	Gabion Mattress – Erosion Control Gabion Basket – Stabilization

- Geogrid → Gabion Baskets/Mattresses → Polypropylene
 - Use of polypropylene geogrid to fabricate gabion baskets and mattresses
 - Gabion Baskets Stabilization
 - Gabion Mattresses Erosion Control (especially high energy environments)
 - Both biaxial and uniaxial geogrid have been used for fabrication
 - Some care required in cold climates may need to stage filling and assembly in partially heated area (to maintain material pliability)

- Geogrid → Gabion Baskets/Mattresses → Polypropylene
 - Benefits:
 - Cost (If PP = 1x, Galv. Steel ≈ 2x, Galv./PVC Coated ≈ 2.5x and SS ≈ 7.5x)
 - Flexibility
 - Durability/Corrosion Resistance especially in a marine environment
 - Typically preassembled except for lid closure
 - Can be lifted in place complete filled and assembled
 - Greater flexibility is dimensions (up to 13 ft width and 164 ft length)
 - Filled dimensions typically adjustable (if needed)

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Note: Typical spacing of diaphragms should equal three aperture lengths.

One edge of side panel should be braided to unit.

Side panel width should equal filled mattress thickness. Geogrid tabs extend beyond each end of mattress for tensioning and lifting. Extra length of grid on each end to facilitate tensioning and lifting

Source: TENSAR

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Prefabricated mattresses ready for filling

Fabricated with separation geotextile

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Typical Filling Frames to More Easily Fill Mattresses

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Assembled baskets to be filled in place

Geogrid → Gabion Baskets/Mattresses → Polypropylene

• Geogrid \rightarrow Gabion Baskets/Mattresses \rightarrow Polypropylene

Lacing for lid closure

• Geogrid \rightarrow Gabion Baskets/Mattresses \rightarrow Polypropylene

Completed mattresses ready for installation

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Rigging and steel Geogrid lifting barlifting hoop Typical 20 ft **One-Ended** Lift - 6 inches 6.5 ft

General Notes:

- Lifting bar, rigging and handling must be suitable to distribute the lifting loads uniformly to the geogrid. Lifting apparatus to be proposed by contractor. Handling and lifting of grid materials and mattresses shall be avoided when the ambient temperature is lower than 5 degrees below zero, C.
- Stone-filled compartments shall be formed by the use of internal baffles across each mat at a maximum spacing of approximately 2 feet.
- All exterior sides and interior baffles and lifting hoops shall be formed with Tensar BX1500 grid.
- See the Project Specifications regarding stone fill materials.
- Filling shall be accomplished such that the average thickness of each mattress does not exceed 6 inches.

Lifting options – frame or single bar

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Lifting completed mattress in place with lifting frame

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Lifting completed mattress in place with end connection

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Lifting bar connection detail

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Mattress being placed in submerged marine application

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Mattress being placed for shoreline protection

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Shoreline protection

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Retaining structure in marine application

Geogrid → Gabion Baskets/Mattresses → Polypropylene

Drainage channel lining

Material	Geomembrane
Structure	Sheet/Membrane
Polymer	Various
Function	Impervious Barrier
Application	Fluid and Gas Containment

- Geomembrane → Multiple Polymer Types
 - Of various applications of geosynthetics none has likely had the impact and footprint the for environmental applications – especially landfills
 - Landfill types include those for hazardous materials, industrial wastes and municipal solid wastes
 - By far the largest in volume is for municipal solid waste (our trash)
 - Impact in protecting environment and resources (especially groundwater) cannot be overstated
 - And the role that geosynthetics play in containing those wastes and protecting environmental resources is colossal

Geomembrane → Municipal Solid Waste Landfill

Typical Cross Section Municipal Solid Waste Landfill

Geosynthetic Types Used:

- Geomembranes
- Geotextiles (various)
- Geosynthetic Clay Liner
- Geocomposite Drains
- Geogrids

Part 4: Functions and Applications Geomembrane → Municipal Solid Waste Landfill

Typical Cross Section Municipal Solid Waste Landfill

Geosynthetic Functions:

- Containment
 - (Impervious Barrier)
- Separation
- Filtration
- Drainage
- Fluid Collection (Leachate)
- Gas Collection/Venting

Geomembrane → Municipal Solid Waste Landfill

- Geomembrane → Example Application: Protection of Acid-Bearing Rock slope Face
 - System developed to cover rock slope face
 - Multiple geosynthetic materials
 - Used NW-NP Geotextile, Geomembrane and Geocell
 - Geocell filled with limestone rock as ballast and to provide alkaline source in event of membrane puncture
 - Thick NW NP geotextile placed top and bottom of geomembrane for protection
 - Geomembrane cuts off oxygen and water to prevent oxidation of rock face and production of acid
 - Geocell ballasts geomembrane like ballasted roof

Material	Geomembrane, Geotextile and Geocell
Structure	Sheet/Membrane, Non-Woven Needle Punched and Expanding Cell
Polymer	Various
Function	Impervious Barrier, Liner Protection and Ballast
Application	Acid Producing Rock Slope Protection

Part 4: Functions and Applications

 Geomembrane/NWNP Geotextile/Geocell → Example Application: Protection of Acid-Bearing Rock slope Face

Facing for Acid Bear Rock Slope

 Geomembrane/NWNP Geotextile/Geocell → Example Application: Protection of Acid-Bearing Rock slope Face

Stop Sleeve with Stainless Steel Cable

Source: Foye, Kevin; "Armored Geomembrane Cover"; Int. J. Environ. Res. Public Health, 2011, 8, 2240-2264.

 Geomembrane/NWNP Geotextile/Geocell → Example Application: Protection of Acid-Bearing Rock slope Face

Source: Foye, Kevin; "Armored Geomembrane Cover"; Int. J. Environ. Res. Public Health, 2011, 8, 2240-2264.

 Geomembrane/NWNP Geotextile/Geocell → Example Application: Protection of Acid-Bearing Rock slope Face

Google Earth

Geomembrane is key component of protection system – isolates rock from oxygen and water.

Geotextile protects geomembrane, and geocell is ballast protecting sheet materials

Part 5: Construction Considerations

Construction Considerations

- Survivability
- Installation (roll size and weight)
- Seaming and connections
- Contractor Means and Methods/Specifications
- Material Acceptance Testing

Part 5: Construction Considerations – Survivability

- Survivability
 - Relative to most other construction materials, geosynthetics can be subject to damage during installation and backfilling
 - This potential for damage needs to be considered in selection of the material (for standard or project specifications) and during design
 - Specifications need to reflect material and strength properties that can survive all short-term applied construction loads, and all long-term service loads and environmental conditions

Part 5: Construction Considerations – Installation

- Installation (roll size and weight)
 - Many geosynthetic materials are manufactured and shipped in rolls
 - Roll size (dimensions width and length) and weights vary width product type and manufacturer
 - Roll dimensions and weight can impact installation methods and time and therefore can influence product selection
 - Material cost may not be fully reflective of in-place cost

- Part 5: Construction Considerations Seaming and Connections
- Seaming and Connections Welded Seams for Geomembranes
 - Two General Types of Geomembrane Field Seams:
 - Fusion
 - Extrusion
 - Fusion welders melt the surface of the geomembrane which is then fused together with pressure

Part 5: Construction Considerations – Seaming and Connections

- Seaming and Connections Welded Seams for Geomembranes
 - There are three general types of fusion welders:
 - Hot wedge welder
 - Hot air welder
 - Ultrasonic Welder
 - Hot wedge and hot air fusion welding consists of placing a selfpropelled welder between two overlapped panel edges
 - Hot welders heat and melt the surface of the geomembrane and then compress the material between two rollers where the combination of heat and pressure fuses the panels

Part 5: Construction Considerations – Seaming and Connections

- Seaming and Connections Welded Seams for Geomembranes
 - Hot wedge welders melt the membrane using a heated metal wedge
 - Hot air welders use a hot air blower to melt the membrane

Part 5: Construction Considerations – Seaming and Connections

• Welded Seams for Geomembranes

Part 5: Construction Considerations – Seaming and Connections
Seaming and Connections – Welded Seams for Geomembranes
Hot wedge welders melt the membrane using a heated metal wedge

Part 5: Construction Considerations – Seaming and Connections
Seaming and Connections – Welded Seams for Geomembranes
Hot air welders use a hot air blower to melt the membrane

- Material Acceptance Testing:
 - Testing method must accurately model the parameter being measured
 - Testing can be index or performance
 - Index testing strictly QC/QA not a performance measure
 - Performance testing assures meeting critical design parameters

- Material Acceptance Testing:
 - Strength Testing
 - Variety of test methods for determining the tensile strength of geosynthetics
 - Method required for use depends on type of material being tested and the purpose of the testing

- Material Acceptance Testing:
 - Strength Testing (ASTM D4632)
 - ASTM D4632 "Standard Test Method for Grab Breaking Load and Elongation of Geotextiles" – strength index test (QC/QA)
 - ASTM D4595 "Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method" – design conformance
 - ASTM D6637 "Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method" – design conformance

- Material Acceptance Testing:
 - ASTM D4632 "Standard Test Method for Grab Breaking Load and Elongation of Geotextiles"

Note edge effect – elevated tensile strength

Grab Tensile Strength and Elongation – not design strength

- Material Acceptance Testing:
 - ASTM D4595 "Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method"

Wide Width Tensile Strength and Elongation

Stress Concentration at Grip

- Material Acceptance Testing:
 - ASTM D4595 "Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method"

Wide Width Tensile Strength and Elongation

Roller Grips – No Stress Concentration

- Material Acceptance Testing:
 - ASTM D6637 "Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method"

- Method A Each specimen to contain at least one intersecting rib (or set of ribs) crossing the test direction with at least three junctions (two apertures) in the direction of the testing
- Methods B and C Each finished specimen to be a minimum of 200 mm wide and contain five ribs in the cross-test direction wide by at least three junctions (two apertures) or 300 mm [12 in.] long in the direction of the testing

- Material Acceptance Testing:
 - ASTM D6637 "Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method"

• Within Test Methods A, B, and C, the outermost ribs are commonly cut prior to testing to permit extra width of material in the clamps to minimize slippage within the clamps. The test results shall be based on the unit of width associated with the number of intact ribs.

- Material Acceptance Testing:
 - ASTM D6637 "Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method"

- Material Acceptance Testing:
 - Testing of Geomembrane Seams (ASTM D7700)
 - ASTM D7700 "Standard Guide for Selecting Test Methods for Geomembrane Seams"
 - Guide intended for use selecting appropriate test methods and practices necessary to evaluate geomembrane seams
 - Covers many different types of geomembranes, seam methods and test methods
 - ASTM states significant effort was made to be comprehensive, however, list of test methods and seam types should not be considered exhaustive

- Material Acceptance Testing:
 - Carbon Black Testing
 - Carbon black is additive in geosynthetics used to resist degradation from UV radiation
 - Carbon black produced by incomplete combustion of hydrocarbons (typical fossil fuels and their derivatives)
 - Variety of methods of production and therefore types of carbon black including furnace black, thermal black, channel black, lamp black and acetylene black
 - Furnace black most common production process and type of carbon black

- Material Acceptance Testing:
 - Carbon Black Testing
 - Two ASTM methods of testing for carbon black for geosynthetics
 - ASTM D1603 "Standard Test Method for Carbon Black Content in Olefin Plastics
 - ASTM D4218 "Standard Test Method for Determination of Carbon Black Content in Polyethylene Compounds By the Muffle-Furnace Technique"
 - CAUTION: If get white residue/ash, other material was substituted for carbon black
- Material Acceptance Testing:
 - Carbon Black Testing Method Comparison

ASTM Designation	Method	Applicability	Limitations
D1603	Tube Furnace with Sample in Nitrogen	Determination of the carbon black content in polyethylene, polypropylene, and polybutylene plastics	Not recommended with acrylic or other polar monomer modifications; Not applicable to compositions that contain nonvolatile pigments or fillers other than carbon black; Not applicable to materials containing brominated flame retardant additives.
D4218	Muffle Furnace	Determination of black polyethylene compounds containing channel or furnace black	Not applicable for thermal black; Not suitable for plastics that char on pyrolysis.

- Material Acceptance Testing:
 - Oxidative Induction Time (OIT) and Durability Testing
 - Less reputable manufacturers can produce material that meet requirements following both the OIT test methodologies
 - Accomplished by using non-durable food additives which can create a very high standard OIT result
 - But such additives do little or nothing to contribute to the longterm performance of the geosynthetic

- Material Acceptance Testing:
 - Oxidative Induction Time (OIT) and Durability Testing

- Material Acceptance Testing:
 - Oxidative Induction Time (OIT) and Durability Testing
 - Further testing of these materials following GSI test methods GM-13 and GM-17 (oven aging and accelerated UV exposure), shows the high initial OIT levels decrease rapidly with thermal or UV aging
 - Material using the low-quality antioxidant additive fails to meet GRI durability criteria, despite very high initial OIT value
 - GRI testing shows that although may be at much lower initial OIT value, high-quality antioxidant additive remains stable and viable over time

- Material Acceptance Testing:
 - Oxidative Induction Time (OIT) and Durability Testing
 - When evaluating long-term durability of geosynthetics (geomembranes), important to comprehensively evaluate material considering not only required OIT value, but long-term thermal and UV durability
 - Adequate long-term thermal and UV durability helps assure adequate integrity of antioxidant additive used in the geosynthetic

- Material Acceptance Testing:
 - Oxidative Induction Time (OIT) and Durability Testing
 - For addition information, go to Geosynthetic Institute (GSI) web site and download GSI White Paper #32 "Rationale and Background for the GRI-GM13 Specification for HDPE Geomembranes"
 - Available at:

www.geosynthetic-institute.org/papers/paper32.pdf

Fundamentals of Geosynthetics: Types, Functions, Selection and Performance

kpetrasic@gfnet.com

END PM Session Gannett Fleming

Fundamentals of Geosynthetics: Types, Functions, Selection and Performance

If you have any questions that we were unable to get to or not satisfactorily addressed, please contact me

If interested in hosting this course or providing for your institution, please contact me

Kerry W. Petrasic, P.E. kpetrasic@gfnet.com

THANK YOU FOR VISITING ...

