Lesson 5:

ReSSA+: Demonstration

Problem – Mechanical Connector

Stacked concrete facing 1.33 ft 10 $\phi = 34^{\circ}$ 2 ft (typ.) $\gamma = 130 \text{ pcf}$ Active wedge is 20 ft not relevant in LE ----ŧ 0.67 ft 1 ft 14 ft

Property	Design Value					
Find T _{max} for design						
$RF_{ID} RF_{CR} RF_{D} = RF$	1.12 x 1.5 x 1.3 = 2.18					
Coverage ratio, R _c	1.0					
Facing unit weight, γ_{block} (pcf)	120					
Facing block height (ft)	0.67					
Facing block width, W _u (ft)	1.0					
Connection strength as fraction of T _{ult} , CR _u	0.75					

Baseline Solution: Stage |

Objective: Find $T_{max} \rightarrow T_{ult}$ =1.5 LTDS = 1.5 RF_{id} RF_d RF_{cr} T_{max}

Define Search Domain to Determine

T _{max} and T _c	Search Domain for ROTATIONAL ANALYSI Search of critical circles is limited to user's defined range of entry points. Input only the range of x (program will calculate the corresponding y):	IS – Top-Down Method	? ×
	All X values are in [ft] X1 to X2 Other Circles Start points (upper part) From X1 value = 101 to X2 value = 137.5		
	Number of START points (between X1 and X2) , Ns: 50 Targeted Fs on strength of soils: Cohes. Fs-cohesion: 1 Read Friction Fs-phi: 1 Note		
	Facing Elements		
	Toe	X = 93.26 ft. Y = 121.34 ft. Gridlines	Each reinforcement layer is divided into: 50 segments. Values should be between 10 - 200
	Method of Stability Analysis : Comprehensive Bishop ROR = 0.0	DEFAULT 123 4567	OK Cancel

Run and Get T_{req}(x), Locus of T_{max}, Circles Defining T_{max}

If reinforcement strength is same as Treq(x), any circle through layers will have the same Fs=1.0 → All circles are equally critical → Therefore, baseline results are rendered based on which we have to select reinforcement with adequate Tult ensuring sufficient margins of safety

Note: There is well-defined Active Wedge as postulated in most simplified designs

RESULTS DISPLAY SETTINGS OK REFRESH **Display Results** Set Graphic Scale (Max. 10 layers) Essential for Layer: of Results: T-reg Critical Circle Save Setting Design Distribution Actual distribution Results: (Fs-po=const.) of of Fs-po(X) on All T-reg. Illout Resistance: Pullout Resistance Rear Locus of Tmax About To: Important Critical Circles Front Front Adjusted Adjusted Tabulated Results Front Front Pullout: All Rears s 🕀 🖪 All Fronts All Adjusted Fronts X = 82.53 ft. Display Y = 127.59 ftTension Map Toe point

Circle for Layer 9 Determining T_{max}. Note that Treq is limited by Pullout Resistance thus Shedding load to layers below

Determining To: For Treq, frontend pullout resistance must be satisfied

All Adjusted Front Pullouts

Tension Map: Color Coded Visual of

Treq

Tabulated Results

Tabulated Results – Stage I ("Internal Stability")

<

ó	Height	<u> </u>	Es-reinf =	T-	required			Connection		Tmax	Input pullout		1
ayer N	from Toe	of LTDS *	LTDS / Tmax	T max	Located from Te	at X of CoSt **	Fs-conn.= CoSt / To	load, To (front end)	To/ Tmax [%]	affected by rear end	resist. at rear-end, Tr-o	Coverage Ratio, Ro	
Ľ	[ft]	[Ib/ft]		[lb/ft]	[ft]	[lb/ft]		[lb/ft]	11	pullout	[lb/ft]		
1	0.67	920.79	1.30	709.94	0.58	690.59	1.44	479.63	68	No	0.00	1.00	
2	2.67	920.79	1.00	920.62	1.19	690.59	1.80	383.71	42	No	0.00	1.00	
3	4.67	920.79	1.00	920.62	2.64	690.59	3.60	191.85	21	No	0.00	1.00	
4	6.67	920.79	1.00	920.62	3.53	690.59	3.15	219.26	24	No	0.00	1.00	
5	8.67	920.79	1.00	920.62	4.70	690.59	3.15	219.26	24	No	0.00	1.00	
6	10.67	920.79	1.00	920.62	5.31	690.59	5.30	130.19	14	Yes	0.00	1.00	
7	12.67	920.79	1.00	920.62	5.92	690.59	3.60	191.85	21	Yes	0.00	1.00	
8	14.67	920.79	1.00	920.62	6.25	690.59	4.20	164.45	18	Yes	0.00	1.00	
9	16.67	920.79	1.00	920.62	6.58	690.59	4.03	171.30	19	Yes	0.00	1.00	
10	18.67	920.79	1.02	903.94	5.23	690.59	1.57	438.52	49	Yes	0.00	1.00	

LTDS is based on T_{ult} and RF specified in Global Stability

* LTDS = Long-Term Design Strength = Tult / (RFid * RFd * RFcr * RFa) where Tult and RF are specified in Global Stability, Fs-reinf. = "Factor of safety" on geosynthetic (reinforcement) strength considering the specified target Fs on soil strength and LTDS specified in Global Stability.
** CoSt = Connection Strength = % of LTDS available at front-end as currently specified in input of Reinforcement in Global Stability.

Fs-conn. = "Factor of safety" on connection strength considering the strength specified in Global stability and the calculated connection load in Baseline Solution.

Treq(x) is calculated for a limit equilibrium state where Fs anywhere is constant. Therefore, To is the connection load at such a limit state. However, connection load can be highly volatile as its value also depends on the relative movement of the face. In addition, loads during construction might be larger than calculated at a limit state. Finally, at working load conditions, higher than calculated connection loads might occur, possibly constraining movements.

It is suggested that you read and understand the commentary in FHWA-HIF-17-004, Section 10.5, pp.105-108, including Fig 10-37.

Open FHWA-HIF-17-004

s) Front / Rear Display Horizontal Displacements

> I

Display T_{max} and T_o **Distributions**

Estimate Horizontal Displacement

Back to Main Menu - Global Stability - Stage II Design

Main Menu				
Ge SIMPLIFIED TIER	ED GENERAL MET	ng Material NTHETIC	Working Project	with ReSSA+
]	nput Data		
Rotational Failu	re Mode: Bishop Analysis		Translational Fa	ilure Mode: Spencer Analysis
Global Stability	Baseline Solution			Define search domain for THREE-PART
Define search domain for Global Stability	Define search domain for baseline solution to determine Tmax and To	TRAI	Define search domain for NSLATIONAL FAILURE MODE (Direct Sliding)	Points on a Mesh Points Along a Line
RUN VIEW RESULTS	RUN VIEW RESULTS		RUN VIEW RESULTS	RUN VIEW RESULTS

Specified T_{ult}/RF Renders Fs=1.0 – Recall Internal Stability

Geosynthetic F	Geosynthetic Reinforcement Multi Type							?	\times	
Total number of reinforcement layers at or above Toe, 10 To modify click on > Modify configuration (elevation, length, type)								ion type)		
			Laye	ers below Toe e	elevation (max	<. 10) : () No) Yes			
Optional data retrival from :		Geosynthetic Designated Name	Geosynthetic Ultimate Strength, T ult	Reduction Factor for Installation Damage,	Reduction Factor for Durability,	Reduction Factor for Creep,	Additional Reduction Factor,	Coverage Ratio, Rc	^	
	1	Type Red	[lb/ft] 2011.00	1.12	RFd 1.30	RFc 1.50	R⊦a 1.00	1.00		
	2 3 4									
	5 <							>	*	
$ \begin{array}{c} \begin{tabular}{lllllllllllllllllllllllllllllllllll$									uantitie meters	:S
DEFAULT	DEFAULT						0	к	Cance	el

To Ascertain Results in Internal Stability, Run Global – Define

Search

Run and Get Fs=1.01 OK

Safety Map Showing the Spatial Distribution of Fs on Soil Strength

Stage II: T_{ult} =1.5 RF T_{max} = 3020 lb/ft Run Global Stab.: Fs=1.39>1.30 OK

Run 2 Part Wedge Sliding using Spencer – Fs=2.07 OK

Using Spencer: Get Normal Stress \rightarrow e, R and Meyerhof $\sigma_v = R/(L-2e)$

Let's get some seismic excitation

Seismic Parameters ?	×
	1
Ground acceleration : Yes No	
Horizontal ground acceleration coefficient, Ao = 0.5	
ReSSA is using in computations the design seismic horizontal acceleration	י
(press F1 for explanation)	
Kh = Am = 0.5 x Ao = 0.250	
Vertical ground acceleration coefficient, kv	
In case of ponding water (such as in reservoirs or water-front structures), should the seismic coefficient be applied also to the water surface surcharge?	
NOTE: Seismic coefficient is not applied to surcharge loads. If deemed necessary, you can adjust Q and omega (see surcharge in General Geometry Mode) to reflect the effects of horizontal acceleration.	
DEFAULT OK Car	ncel

Change RFcr=1.0 and Run Baseline

Tension Map Indicates the Impact of Compound Stability

Under Seismic Loading Pullout May Play Significant Role

While Tmax increases, taking RFcr=1.0 Renders

Tabulated Results - Stage I ("Internal Stability")

Impact of Compound Failure is Manifested in Required high T_{max} and T_o at Bottom Layers

Also Displacement is large at Bottom

Layers

syer No.	Height from Toe	Current input of LTDS	Tensile Modulus of Geosynthetics, J, at 2% strain	Horizontal Displacement at Face of Slope, d	^
Ľ	[ft]	[lb/ft]	[lb/ft]	[inch]	
1	0.67	2074.18	34000	1.53	
2	2.67	2074.18	34000	5.67	
3	4.67	2074.18	34000	8.34	
4	6.67	2074.18	34000	7.96	
5	8.67	2074.18	34000	6.90	
6	10.67	2074.18	34000	5.72	
7	12.67	2074.18	34000	4.80	
8	14.67	2074.18	34000	4.14	
9	16.67	2074.18	34000	3.56	
10	18.67	2074.18	34000	2.53	
					~
c				>	
DTES		المعانية معاما	di	6	

Estimated Horizontal Displacement, d. at Face of Slope for Specified Fs

The approximated horizontal displacement, d, is calculated following this expression:
 Where: Ti is the force calculated at segment i and

DEFAULT

 ΔX_i is the length of segment i. That is, $\Delta X_i = L/n$ where L is length of

the considered reinforcement layer and n is the number of segments along a layer specified in your data (between 50 and 200). J is the tensile modulus of the reinforcement having unit of [Force/Length]. Typically, J is determined at 2% geosynthetic strain.

3. The displacement d is solely due to estimated cumulative elongation of the reinforcement. It does not reflect possible translational movement of the reinforced mass. To avoid translational movement, conduct 2-part wedge global stability analysis (in Global Stability mode) verifying that for the selected layout of reinforcement the global Fs is adequate, typically >1.3.

Global Stability Sliding: Fs=1.07 OK

K_{h-y} at Each Elevation – Can be used for seismic displacement

Sliding: What if $A_o = 0.7$ ($K_h = 0.35$)?

Seismic Parameters ? X	Captured Kh_y	×
Ground acceleration : Yes No Horizontal ground acceleration coefficient, Ao = 0.7 ReSSA is using in computations the design seismic horizontal acceleration (press F1 for explanation) Kh = Am = 0.5 x Ao = 0.350 Vertical ground • + (down) kv = 0 x kh = 0.000 acceleration • + (down) kv = 0 x kh = 0.000 Vertical ground • + (down) kv = 0 x kh = 0.000 In case of ponding water (such as in reservoirs or water-front structures), should the seismic coefficient be applied also to the water surface surcharge? • NO NOTE: Seismic coefficient is not applied to surcharge loads. If deemed necessary, you can adjust Q and omega (see surcharge in General Geometry Mode) to reflect the effects of horizontal acceleration. DEFAULT OK Cancel	Captured Kh, y at Toe elevation is 0.340 5 Toe Elevation Layer # 10 1 0.282 0.296 1 Layer # 3 2 0.296 3 0.312 Layer # 3 4 0.330 Kh_y = 0.350 Layer # 4 6 0.370 Kh_y Layer # 5 7 0.395 Calculated Kh_y Layer # 4 8 0.425 At this elevation Fs(static) < 1.0	
	15 Image: Construction of the second sec	