

During Construction and Ei

Constructed Runway Extension Engineering Materials Arresting System (EMAS)

https://blogs.agu.org/landslideblog/2015/03/13/yeager-airport-1/

Good news... the EMAS worked!

3

Slope Failure: Distant View

https://www.wvpublic.org/post/photos-latest-yeager-airport-landslide#stream/0

Л

/

Photo Dated 28 September 2005

First day of geogrid installation

9

© Geosynthetics □

15 March 2015 Failure

https://wchsnetwork.co m/emas-blocks-beingdelivered-to-yeagerairport-for-hillsiderepair/

Geogrid Placement Cross-section Geosynthetics op of 6" Processed Rock Geogrid Soil Reinforcing Shot Rock Backfill Geogrid Soil Reinforcing **Shot Rock Backfill** Rock fragments Percent Passing Placed in layers <2-ft thick 6 inch Maximum Particle Size = 24 in. No. 4 30 to 100 No. 20 0 to 60 No. 200 0 to 50

©Geosynthetics □

Forensic Analysis Of Geogrid

15

© Geosynthetics □

Forensic Analysis Of Geogrid

Atypical Damage

Typical Damage (2-3 per 120 sf sample)

■ Geosynthetics

Geogrid Properties for Design

Geogrid	Ultimate Tensile Strength, T _{ult} kN/m (lb/ft)	Creep Reduction Factor	Installation Damage Reduction Factor	Durability Reduction Factor	Allowable Tensile Strength, T _{all} kN/m (lb/ft)
10XT	145.2 (9,950)	1.90	1.34	1.15	49.59(3,398)
20XT	187.9 (12,870)	1.90	1.30	1.15	66.11 (4,530)

The Long Term Design Strength (LTDS) or Allowable Tensile Strength (T_{all}) is determined as follows:

$$T_{all} = LTDS = T_{ULT} \div (RF_{ID} \times RF_{CR} \times RF_{D})$$
 Where:

 T_{ULT} is the minimum average roll value (MARV) wide width Ultimate Tensile Strength determined by ASTM D6637;

RF_{ID} is the Reduction Factor for Installation Damage;

RF_{CR} is the Reduction Factor for Material Creep;

 $\rm RF_D$ is the Reduction Factor for Durability; which combines both the chemical and biological degradation reduction factors of the GRI-GT7 method

17

Maximum Working Stresses in Geogrids

- · Very low mobilized stress in geogrid
 - $T_{LTDS} = 50 \text{ to } 66 \text{ kN/m/m}$
- Stresses in geogrid are highest in middle zone
- Geogrid stress increases at free end likely due to sloping rock interface

19

Major Observations from Analyses Geogrid and RSS

- When considering original properties, no geogrid failure was observed and calculated stresses in geogrids are significantly below long term design stress.
- Geogrid as manufactured and installed was not defective and geogrid properties had no contribution to the failure
- Reducing soil strength or strength of foundation can cause a significant increase in tensile stress in the geogrids.

Performance of High-strength Geogrid in Reinforced Soil Slope at the Yeager Airport

- High-strength coated polyester geogrid reinforcement performed better than anticipated considering potential installation damage
- After 10 years of service, exhumed samples of the geogrid suffered only minor damage, despite use of an aggressive backfill

Thank You for Your Participation Today

