

Project Overview

- CN Bala Subdivision runs between Toronto & Capreol in Ontario
- Major part of transcontinental link between Southern Ontario & Western Canada
- Very busy route
 - Heavy CN rail
 - Several weekly Via Rail trains
 - Weekday GO rush hour trains
- Two-kilometre rail line twinning completed in 2017 – Aurora, ON

3

Project Overview

- Site characterized by deep pockets of muskeg/bog
- Concerns with settlement of existing track
- Several geosynthetic solutions in original design
 - Multi-layered geosynthetic reinforced raft
 - Geosynthetics reinforced embankment surcharge
- Problematic area required pile supported platforms with geosynthetic reinforced soil beam

5

Site Conditions Between Mileage 29.2 & 29.5

Geosynthetics Used for Access Road								
	High Modulus PP Woven Geotextile 1 (Base of Raft)		High Modulus PP Woven Geotextile 2 (Within Raft)		Uniaxial PET Geogrid (Temporary Surcharge)			
	MD	XD	MD	CD				
Tensile Strength @ Ultimate (kN/m)	105.0	155.0	52.5	47.3	51.1			
Tensile Strength @ 5% Strain (kN/m)	21.9	78.8	21.9	22.8	15.4			
Seam Strength (kN/m)	N/A	82.5	N/A		N/A			
Long Term Design Strength (kN/m)	N/A		N/A		30.5			

Unexpected Site Challenge

- Peat > 6 m thick unable to support initial fill loads
- Excessive settlement to existing track in these areas
- Two locations
 - 47+310 47+375 (65 m)
 - 47+425 47+525 (100 m)
- Piles needed to stabilize existing track and reinforce new mainline

	High Strength PET Geotextile 3 (Reinforced Soil Beam)		Nonwoven Geotextile (Pile Cap Cover)		
	MD	XD	MD	CD	
Tensile Strength @ Ultimate (kN/m)	800.0	100.0	N/A	N/A	
Tensile Strength @ 5% Strain (kN/m)	280	N/A	N/A	N/A	
Seam Strength (kN/m)	> 70	N/A	N/A		
Weight (g/m²)	N/A		1084.8		
Thickness (mm)	N/A		8.1		

Successes & Lessons Learned

- Floating soil beam design is suitable for building adjacent to existing tracks through deep peat deposit
- Maintained operations on 1st mainline without interruption
- 2nd mainline in service since Fall 2017
 - Minimum to no settlement on track supported by floating soil beam
- Very beneficial if contractor is experienced in installing geosynthetics
- Tight coordination between manufacturer, distributor, sewing contractor and general contractor
- Care with geosynthetics
 - Cleanliness
 - Damage prevention

Acknowledgements

CN Rail

Robert Versteegen Edward Wu, P. Eng.

Journeaux Associés

David Rodger, ing.

MR Consulting

Mario Ruel, ing.

TenCate Geosynthetics

Andrew Lister

Layfield Construction Products

